Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.04.2020

A Characteristic-Featured Shock Wave Indicator for Conservation Laws Based on Training an Artificial Neuron

verfasst von: Yiwei Feng, Tiegang Liu, Kun Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we use exact solutions of one-dimensional Burgers equation to train an artificial neuron as a shock wave detector. The expression of the artificial neuron detector is then modified into a practical form to reflect admissible jump of eigenvalues. We show the working mechanism of the practical form is consistent with compressing or intersecting of characteristic curves. In addition, we prove there is indeed a discontinuity inside the cell detected by the practical form, and smooth extrema and large gradient regions are never marked. As a result, we apply the practical form to numerical schemes as a shock wave indicator with its easy extension to multi-dimensional conservation laws. Numerical results are present to demonstrate the robustness of the present indicator under Runge–Kutta Discontinuous Galerkin framework, its performance is generally compared to TVB-based indicators more efficiently and accurately. To treat the initial inadmissible jumps, including linear contact discontinuities and those evolving into rarefaction waves, a preliminary strategy of combining a traditional indicator in the beginning with the present indicator is suggested. We believe the present indicator can be applied to unstructured mesh in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M.: TensorFlow, Large-scale machine learning on heterogeneous systems, (2015) https://www.tensorflow.org/ Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M.: TensorFlow, Large-scale machine learning on heterogeneous systems, (2015) https://​www.​tensorflow.​org/​
2.
Zurück zum Zitat Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. NASA STI/Recon Technical Report A 90 (1989) Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. NASA STI/Recon Technical Report A 90 (1989)
3.
Zurück zum Zitat Cheng, J., Du, Z., Lei, X., Wang, Y., Li, J.: A two-stage fourth-order discontinuous Galerkin method based on the GRP solver for the compressible Euler equations. Comput. Fluids 181, 248–258 (2019)MathSciNetCrossRef Cheng, J., Du, Z., Lei, X., Wang, Y., Li, J.: A two-stage fourth-order discontinuous Galerkin method based on the GRP solver for the compressible Euler equations. Comput. Fluids 181, 248–258 (2019)MathSciNetCrossRef
4.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH
5.
Zurück zum Zitat Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef
6.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
7.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef
8.
Zurück zum Zitat Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2010) Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2010)
9.
Zurück zum Zitat Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNetCrossRef Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)MathSciNetCrossRef
10.
Zurück zum Zitat Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRef
11.
Zurück zum Zitat Gurney, K.: An Introduction to Neural Networks[M]. UCL Press, Boca Raton (1997)CrossRef Gurney, K.: An Introduction to Neural Networks[M]. UCL Press, Boca Raton (1997)CrossRef
12.
Zurück zum Zitat Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)MathSciNetCrossRef Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)MathSciNetCrossRef
13.
Zurück zum Zitat Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. In: Upwind and High-Resolution Schemes, pp. 187–217. Springer (1997) Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. In: Upwind and High-Resolution Schemes, pp. 187–217. Springer (1997)
14.
Zurück zum Zitat Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH
15.
Zurück zum Zitat Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, In: 14th Fluid and Plasma Dynamics Conference, p. 1259 (1981) Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, In: 14th Fluid and Plasma Dynamics Conference, p. 1259 (1981)
16.
Zurück zum Zitat Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRef Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRef
17.
Zurück zum Zitat Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math 7, 159–193 (1954)MathSciNetCrossRef Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math 7, 159–193 (1954)MathSciNetCrossRef
18.
Zurück zum Zitat Leveque, R.J.: Finite volume methods for hyperbolic problems. Meccanica 39, 88–89 (2004)CrossRef Leveque, R.J.: Finite volume methods for hyperbolic problems. Meccanica 39, 88–89 (2004)CrossRef
19.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on International Conference on Machine Learning (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on International Conference on Machine Learning (2010)
20.
Zurück zum Zitat Nasr, G.E., Badr, E.A., Joun, C.: Cross entropy error function in neural networks: forecasting gasoline demand. In: Fifteenth International Florida Artificial Intelligence Research Society Conference (2002) Nasr, G.E., Badr, E.A., Joun, C.: Cross entropy error function in neural networks: forecasting gasoline demand. In: Fifteenth International Florida Artificial Intelligence Research Society Conference (2002)
21.
Zurück zum Zitat Nowlan, S.J., Hinton, G.E.: Simplifying Neural Networks by Soft Weight-Sharing. MIT Press, Cambridge (1992)CrossRef Nowlan, S.J., Hinton, G.E.: Simplifying Neural Networks by Soft Weight-Sharing. MIT Press, Cambridge (1992)CrossRef
22.
Zurück zum Zitat Oh, S.H.: Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74, 1058–1061 (2011)CrossRef Oh, S.H.: Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74, 1058–1061 (2011)CrossRef
23.
Zurück zum Zitat Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1990)CrossRef Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1990)CrossRef
24.
Zurück zum Zitat Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNetCrossRef
25.
Zurück zum Zitat Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)MathSciNetCrossRef
26.
Zurück zum Zitat Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method ii: two dimensional case. Comput. Fluids 34, 642–663 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method ii: two dimensional case. Comput. Fluids 34, 642–663 (2005)MathSciNetCrossRef
27.
Zurück zum Zitat Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRef Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRef
28.
Zurück zum Zitat Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018)MathSciNetCrossRef Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018)MathSciNetCrossRef
29.
Zurück zum Zitat Ray, D., Hesthaven, J.S.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019) MathSciNetCrossRef Ray, D., Hesthaven, J.S.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019) MathSciNetCrossRef
30.
Zurück zum Zitat Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef
31.
Zurück zum Zitat Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998) Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998)
32.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. In: Upwind and High-Resolution Schemes, pp. 328–374. Springer (1989) Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. In: Upwind and High-Resolution Schemes, pp. 328–374. Springer (1989)
33.
Zurück zum Zitat Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRef Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRef
34.
Zurück zum Zitat Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetCrossRef Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetCrossRef
35.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 87–114. Springer, Berlin (2013) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 87–114. Springer, Berlin (2013)
36.
Zurück zum Zitat Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)CrossRef Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)CrossRef
37.
Zurück zum Zitat Woodward, C.P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetCrossRef Woodward, C.P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetCrossRef
Metadaten
Titel
A Characteristic-Featured Shock Wave Indicator for Conservation Laws Based on Training an Artificial Neuron
verfasst von
Yiwei Feng
Tiegang Liu
Kun Wang
Publikationsdatum
01.04.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01200-5

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner