Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.04.2020

A Linearly Implicit Structure-Preserving Scheme for the Camassa–Holm Equation Based on Multiple Scalar Auxiliary Variables Approach

verfasst von: Chaolong Jiang, Yuezheng Gong, Wenjun Cai, Yushun Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a linearly implicit energy-preserving scheme for the Camassa–Holm equation by using the multiple scalar auxiliary variables approach, which is first developed to construct efficient and robust energy stable schemes for gradient systems. The Camassa–Holm equation is first reformulated into an equivalent system by utilizing the multiple scalar auxiliary variables approach, which inherits a modified energy. Then, the system is discretized in space aided by the standard Fourier pseudo-spectral method and a semi-discrete system is obtained, which is proven to preserve a semi-discrete modified energy. Subsequently, the linearized Crank–Nicolson method is applied for the resulting semi-discrete system to arrive at a fully discrete scheme. The main feature of the new scheme is to form a linear system with a constant coefficient matrix at each time step and produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution. Several numerical results are addressed to confirm accuracy and efficiency of the proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019)MathSciNetCrossRef Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019)MathSciNetCrossRef
2.
Zurück zum Zitat Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRef Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRef
3.
Zurück zum Zitat Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)CrossRef Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)CrossRef
4.
Zurück zum Zitat Chen, J., Qin, M.: Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)MathSciNetMATH Chen, J., Qin, M.: Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)MathSciNetMATH
5.
Zurück zum Zitat Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40, A3982–A4006 (2018)MathSciNetCrossRef Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40, A3982–A4006 (2018)MathSciNetCrossRef
6.
Zurück zum Zitat Cohen, D., Raynaud, X.: Geometric finite difference schemes for the generalized hyperelastic-rod wave equation. J. Comput. Appl. Math. 235, 1925–1940 (2011)MathSciNetCrossRef Cohen, D., Raynaud, X.: Geometric finite difference schemes for the generalized hyperelastic-rod wave equation. J. Comput. Appl. Math. 235, 1925–1940 (2011)MathSciNetCrossRef
7.
Zurück zum Zitat Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457, 953–970 (2001)MathSciNetCrossRef Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457, 953–970 (2001)MathSciNetCrossRef
8.
Zurück zum Zitat Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRef Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRef
9.
Zurück zum Zitat Eidnes, S., Li, L., Sato, S.: Linearly implicit structure-preserving schemes for Hamiltonian systems (2019). arXiv preprint arXiv:1901.03573 Eidnes, S., Li, L., Sato, S.: Linearly implicit structure-preserving schemes for Hamiltonian systems (2019). arXiv preprint arXiv:​1901.​03573
10.
Zurück zum Zitat Gong, Y., Cai, J., Wang, Y.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef Gong, Y., Cai, J., Wang, Y.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Gong, Y., Wang, Y.: An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs. Commun. Comput. Phys. 20, 1313–1339 (2016)MathSciNetCrossRef Gong, Y., Wang, Y.: An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs. Commun. Comput. Phys. 20, 1313–1339 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Gong, Y., Zhao, J., Yang, X., Wang, Q.: Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J. Sci. Comput. 40, B138–B167 (2018)MathSciNetCrossRef Gong, Y., Zhao, J., Yang, X., Wang, Q.: Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J. Sci. Comput. 40, B138–B167 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)MathSciNetCrossRef Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)MathSciNetCrossRef
14.
Zurück zum Zitat Hong, Q., Gong, Y., Lv, Z.: Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa–Holm equation. Appl. Math. Comput. 346, 86–95 (2019)MathSciNetMATH Hong, Q., Gong, Y., Lv, Z.: Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa–Holm equation. Appl. Math. Comput. 346, 86–95 (2019)MathSciNetMATH
15.
Zurück zum Zitat Jiang, C., Wang, Y., Gong, Y.: Arbitrarily high-order energy-preserving schemes for the Camassa–Holm equation. Appl. Numer. Math. 151, 85–97 (2020)MathSciNetCrossRef Jiang, C., Wang, Y., Gong, Y.: Arbitrarily high-order energy-preserving schemes for the Camassa–Holm equation. Appl. Numer. Math. 151, 85–97 (2020)MathSciNetCrossRef
16.
Zurück zum Zitat Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa–Holm equation. Chaos Solitons Fractals 25, 287–298 (2005)MathSciNetCrossRef Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa–Holm equation. Chaos Solitons Fractals 25, 287–298 (2005)MathSciNetCrossRef
17.
18.
Zurück zum Zitat Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)MathSciNetCrossRef Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat Miyatake, Y., Matsuo, T.: Energy-preserving \(H^1\)-Galerkin schemes for shallow water wave equations with peakon solutions. Phys. Lett. A 376, 2633–2639 (2012)MathSciNetCrossRef Miyatake, Y., Matsuo, T.: Energy-preserving \(H^1\)-Galerkin schemes for shallow water wave equations with peakon solutions. Phys. Lett. A 376, 2633–2639 (2012)MathSciNetCrossRef
20.
Zurück zum Zitat Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH
21.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRef Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)MathSciNetCrossRef Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)MathSciNetCrossRef
23.
Zurück zum Zitat Xu, Y., Shu, C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRef Xu, Y., Shu, C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRef
24.
Zurück zum Zitat Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRef Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 318, 803–825 (2017)MathSciNetCrossRef Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 318, 803–825 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Zhu, H., Song, S., Tang, Y.: Multi-symplectic wavelet collocation method for the Schrödinger equation and the Camassa–Holm equation. Comput. Phys. Commun. 182, 616–627 (2011)CrossRef Zhu, H., Song, S., Tang, Y.: Multi-symplectic wavelet collocation method for the Schrödinger equation and the Camassa–Holm equation. Comput. Phys. Commun. 182, 616–627 (2011)CrossRef
Metadaten
Titel
A Linearly Implicit Structure-Preserving Scheme for the Camassa–Holm Equation Based on Multiple Scalar Auxiliary Variables Approach
verfasst von
Chaolong Jiang
Yuezheng Gong
Wenjun Cai
Yushun Wang
Publikationsdatum
01.04.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01201-4

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner