Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

A comparative insight into peptide folding with quantum CVaR-VQE algorithm, MD simulations and structural alphabet analysis

Authors: Akshay Uttarkar, Vidya Niranjan

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum computing in biology is one of the most rapidly evolving fields of technology. Protein folding is one of the key challenges which requires accurate and efficient algorithms with a quick computational time. Structural conformations of proteins with disordered regions need colossal amount of computational resource to map its least energy conformation state. In this regard, quantum algorithms like variational quantum eigensolver (VQE) are applied in the current research work to predict the lowest energy value of 50 peptides of seven amino acids each. VQE is initially used to calculate the energy values over which variational quantum optimization is applied via conditional value at risk (CVaR) over 100 iterations of 500,000 shots each to obtain least ground-state energy value. This is compared to the molecular dynamics-based simulations of 50 ns each to calculate the energy values along with the folding pattern. The results suggest efficient folding outcomes from CVaR-VQE compared to MD-based simulations and HMM-SA. With the ever-expanding quantum hardware and improving algorithms, the problem of protein folding can be resolved to obtain in-depth insights on the biological process and drug design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shea, J.-E., Brooks Iii, C.L.: FROM folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52(1), 499–535 (2001)ADSCrossRefPubMed Shea, J.-E., Brooks Iii, C.L.: FROM folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52(1), 499–535 (2001)ADSCrossRefPubMed
2.
go back to reference Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58(1), 57–83 (2007)ADSCrossRefPubMed Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58(1), 57–83 (2007)ADSCrossRefPubMed
3.
go back to reference Freddolino, P.L., Liu, F., Gruebele, M., Schulten, K.: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys. J. 94(10), L75–L77 (2008)CrossRefPubMedPubMedCentral Freddolino, P.L., Liu, F., Gruebele, M., Schulten, K.: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys. J. 94(10), L75–L77 (2008)CrossRefPubMedPubMedCentral
4.
go back to reference Daidone, I., Amadei, A., Roccatano, D., Nola, A.D.: Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c. Biophys. J. 85(5), 2865–2871 (2003)ADSCrossRefPubMedPubMedCentral Daidone, I., Amadei, A., Roccatano, D., Nola, A.D.: Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c. Biophys. J. 85(5), 2865–2871 (2003)ADSCrossRefPubMedPubMedCentral
5.
go back to reference Beck, D.: Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34(1), 112–120 (2004)CrossRefPubMed Beck, D.: Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34(1), 112–120 (2004)CrossRefPubMed
6.
go back to reference Sonavane, U.B., Ramadugu, S.K., Joshi, R.R.: Study of early events in the protein folding of Villin headpiece using molecular dynamics simulation. J. Biomol. Struct. Dyn. 26(2), 203–214 (2008)CrossRefPubMed Sonavane, U.B., Ramadugu, S.K., Joshi, R.R.: Study of early events in the protein folding of Villin headpiece using molecular dynamics simulation. J. Biomol. Struct. Dyn. 26(2), 203–214 (2008)CrossRefPubMed
8.
go back to reference GhÉLis, C., Yon, J.: Introduction to considerations of protein folding deduced from characteristics of folded proteins. In: Ghélis, C. (ed.) Protein folding, pp. 35–6. Elsevier, Amsterdam (1982)CrossRef GhÉLis, C., Yon, J.: Introduction to considerations of protein folding deduced from characteristics of folded proteins. In: Ghélis, C. (ed.) Protein folding, pp. 35–6. Elsevier, Amsterdam (1982)CrossRef
9.
go back to reference Robert, A., Barkoutsos, P.K., Woerner, S., Tavernelli, I.: Resource-efficient quantum algorithm for protein folding. npj Quantum Inform. 7(1), 38 (2021)ADSCrossRef Robert, A., Barkoutsos, P.K., Woerner, S., Tavernelli, I.: Resource-efficient quantum algorithm for protein folding. npj Quantum Inform. 7(1), 38 (2021)ADSCrossRef
10.
go back to reference Vogt, N., Zanker, S., Reiner, J.-M., Marthaler, M., Eckl, T., Marusczyk, A.: Preparing ground states with a broken symmetry with variational quantum algorithms. Quantum Sci. Technol. 6(3), 035003 (2021)ADSCrossRef Vogt, N., Zanker, S., Reiner, J.-M., Marthaler, M., Eckl, T., Marusczyk, A.: Preparing ground states with a broken symmetry with variational quantum algorithms. Quantum Sci. Technol. 6(3), 035003 (2021)ADSCrossRef
11.
go back to reference Choquette, A., Di Paolo, A., Barkoutsos, P.K., Sénéchal, D., Tavernelli, I., Blais, A.: Quantum-optimal-control-inspired ansatz for variational quantum algorithms. Phys. Rev. Res. 3(2), 023092 (2021)CrossRef Choquette, A., Di Paolo, A., Barkoutsos, P.K., Sénéchal, D., Tavernelli, I., Blais, A.: Quantum-optimal-control-inspired ansatz for variational quantum algorithms. Phys. Rev. Res. 3(2), 023092 (2021)CrossRef
12.
go back to reference Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., Coles, P.J.: Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2(9), 567–576 (2022)CrossRefPubMed Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., Coles, P.J.: Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2(9), 567–576 (2022)CrossRefPubMed
13.
go back to reference Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., et al.: The variational quantum Eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)ADSMathSciNetCrossRef Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., et al.: The variational quantum Eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)ADSMathSciNetCrossRef
14.
go back to reference Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2021)ADSCrossRefPubMedPubMedCentral Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2021)ADSCrossRefPubMedPubMedCentral
15.
go back to reference Uvarov, A.V., Biamonte, J.D.: On barren plateaus and cost function locality in variational quantum algorithms. J. Phys. A Math. Theor. 54(24), 245301 (2021)ADSMathSciNetCrossRef Uvarov, A.V., Biamonte, J.D.: On barren plateaus and cost function locality in variational quantum algorithms. J. Phys. A Math. Theor. 54(24), 245301 (2021)ADSMathSciNetCrossRef
16.
go back to reference Lee, J., Huggins, W.J., Head-Gordon, M., Whaley, K.B.: Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput. 15(1), 311–324 (2018)CrossRefPubMed Lee, J., Huggins, W.J., Head-Gordon, M., Whaley, K.B.: Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput. 15(1), 311–324 (2018)CrossRefPubMed
17.
go back to reference Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum. 3(1), 010313 (2022)ADSCrossRef Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum. 3(1), 010313 (2022)ADSCrossRef
18.
go back to reference Chandarana, P., Hegade, N.N., Montalban, I., Solano, E., Chen, X.: Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 20(1), 014024 (2023)ADSCrossRef Chandarana, P., Hegade, N.N., Montalban, I., Solano, E., Chen, X.: Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 20(1), 014024 (2023)ADSCrossRef
19.
go back to reference Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., et al.: Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94(1), 015004 (2022)ADSMathSciNetCrossRef Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., et al.: Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94(1), 015004 (2022)ADSMathSciNetCrossRef
20.
go back to reference Wecker, D., Hastings, M.B., Troyer, M.: Progress towards practical quantum variational algorithms. Phys. Rev. A. 92(4), 042303 (2015)ADSCrossRef Wecker, D., Hastings, M.B., Troyer, M.: Progress towards practical quantum variational algorithms. Phys. Rev. A. 92(4), 042303 (2015)ADSCrossRef
21.
go back to reference Wiersema, R., Zhou, C., de Sereville, Y., Carrasquilla, J.F., Kim, Y.B., Yuen, H.: Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quantum. 1(2), 020319 (2020)CrossRef Wiersema, R., Zhou, C., de Sereville, Y., Carrasquilla, J.F., Kim, Y.B., Yuen, H.: Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quantum. 1(2), 020319 (2020)CrossRef
22.
go back to reference Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)ADSCrossRefPubMed Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)ADSCrossRefPubMed
23.
go back to reference Farhi, E., Goldstone, J., Gutmann, S., Zhou, L.: The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size. Quantum 6, 759 (2022)CrossRef Farhi, E., Goldstone, J., Gutmann, S., Zhou, L.: The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size. Quantum 6, 759 (2022)CrossRef
24.
go back to reference Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., et al.: Intrinsically disordered protein. J. Mol. Graph. Model. 19(1), 26–59 (2001)CrossRefPubMed Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., et al.: Intrinsically disordered protein. J. Mol. Graph. Model. 19(1), 26–59 (2001)CrossRefPubMed
25.
go back to reference Campen, A., Williams, R., Brown, C., Meng, J., Uversky, V., Dunker, A.: TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 15(9), 956–963 (2008)CrossRefPubMedPubMedCentral Campen, A., Williams, R., Brown, C., Meng, J., Uversky, V., Dunker, A.: TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 15(9), 956–963 (2008)CrossRefPubMedPubMedCentral
26.
go back to reference Du, Y., Huang, T., You, S., Hsieh, M.-H., Tao, D.: Quantum circuit architecture search for variational quantum algorithms. npj Quantum Inform. 8(1), 62 (2022)ADSCrossRef Du, Y., Huang, T., You, S., Hsieh, M.-H., Tao, D.: Quantum circuit architecture search for variational quantum algorithms. npj Quantum Inform. 8(1), 62 (2022)ADSCrossRef
29.
30.
go back to reference MadhaviSastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W.: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27(3), 221–234 (2013)ADSCrossRef MadhaviSastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W.: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27(3), 221–234 (2013)ADSCrossRef
31.
go back to reference Greenwood, J.R., Calkins, D., Sullivan, A.P., Shelley, J.C.: Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24(6–7), 591–604 (2010)ADSCrossRefPubMed Greenwood, J.R., Calkins, D., Sullivan, A.P., Shelley, J.C.: Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24(6–7), 591–604 (2010)ADSCrossRefPubMed
32.
go back to reference Shelley, J.C., Cholleti, A., Frye, L.L., Greenwood, J.R., Timlin, M.R., Uchimaya, M.: Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21(12), 681–691 (2007)ADSCrossRefPubMed Shelley, J.C., Cholleti, A., Frye, L.L., Greenwood, J.R., Timlin, M.R., Uchimaya, M.: Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21(12), 681–691 (2007)ADSCrossRefPubMed
33.
go back to reference Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J.M., Lu, C., et al.: OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15(3), 1863–1874 (2019)CrossRefPubMed Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J.M., Lu, C., et al.: OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15(3), 1863–1874 (2019)CrossRefPubMed
34.
go back to reference Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)CrossRef Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)CrossRef
35.
go back to reference Bowers, K.J., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E., Chow, E., et al.: Molecular dynamics—Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing—SC '06, ACM Press (2006) Bowers, K.J., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E., Chow, E., et al.: Molecular dynamics—Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing—SC '06, ACM Press (2006)
36.
go back to reference Uttarkar, A., Niranjan, V.: Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. Mol. Simul. 48(17), 1592–1603 (2022)CrossRef Uttarkar, A., Niranjan, V.: Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. Mol. Simul. 48(17), 1592–1603 (2022)CrossRef
37.
go back to reference Niranjan, V., Uttarkar, A., Ramakrishnan, A., Muralidharan, A., Shashidhara, A., Acharya, A., et al.: De novo design of anti-COVID Drugs using machine learning-based equivariant diffusion model targeting the spike protein. Curr. Issues Mol. Biol. 45(5), 4261–4284 (2023)CrossRefPubMedPubMedCentral Niranjan, V., Uttarkar, A., Ramakrishnan, A., Muralidharan, A., Shashidhara, A., Acharya, A., et al.: De novo design of anti-COVID Drugs using machine learning-based equivariant diffusion model targeting the spike protein. Curr. Issues Mol. Biol. 45(5), 4261–4284 (2023)CrossRefPubMedPubMedCentral
40.
go back to reference Perdomo, A., Truncik, C., Tubert-Brohman, I., Rose, G., Aspuru-Guzik, A.: Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys. Rev. A. 78(1), 012320 (2008)ADSCrossRef Perdomo, A., Truncik, C., Tubert-Brohman, I., Rose, G., Aspuru-Guzik, A.: Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys. Rev. A. 78(1), 012320 (2008)ADSCrossRef
41.
go back to reference Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)CrossRef Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)CrossRef
42.
go back to reference Babbush, R., Perdomo-Ortiz, A., O’Gorman, B., Macready, W., Aspuru-Guzik, A.: Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing. In: Prigogine, I., Rice, S.A. (eds.) Advances in chemical physics, pp. 201–44. Wiley, London (2014) Babbush, R., Perdomo-Ortiz, A., O’Gorman, B., Macready, W., Aspuru-Guzik, A.: Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing. In: Prigogine, I., Rice, S.A. (eds.) Advances in chemical physics, pp. 201–44. Wiley, London (2014)
43.
go back to reference Fingerhuth, M., Babej, T., Wittek, P.: Adiabatic quantum computation. Definitions: Qeios, (2019) Fingerhuth, M., Babej, T., Wittek, P.: Adiabatic quantum computation. Definitions: Qeios, (2019)
45.
go back to reference Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2020)CrossRef Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2020)CrossRef
46.
go back to reference Boulebnane, S., Lucas, X., Meyder, A., Adaszewski, S., Montanaro, A.: Peptide conformational sampling using the quantum approximate optimization algorithm. npj Quantum Inform. 9(1), 70 (2023)ADSCrossRef Boulebnane, S., Lucas, X., Meyder, A., Adaszewski, S., Montanaro, A.: Peptide conformational sampling using the quantum approximate optimization algorithm. npj Quantum Inform. 9(1), 70 (2023)ADSCrossRef
Metadata
Title
A comparative insight into peptide folding with quantum CVaR-VQE algorithm, MD simulations and structural alphabet analysis
Authors
Akshay Uttarkar
Vidya Niranjan
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04261-9

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue