Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

Secure quantum signature scheme without entangled state

Authors: Tianyuan Zhang, Xiangjun Xin, Lei Sun, Chaoyang Li, Fagen Li

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The security of most quantum signatures cannot be proved with security model under chosen-message attack. No formal proof can prove that their security is fully dependent on the basic quantum theory. Based on the orthogonal quantum state and key-controlled quantum hash function, an arbitrated quantum signature is proposed. In this scheme, the signatory produces the quantum signature by quantum-encrypting the output of key-controlled quantum hash function. The signature verification is performed by decrypting the signed message and comparing the decrypted message with the output of the key-controlled quantum hash function. The security of the proposed scheme depends on the indistinguishability of the unknown quantum sequence. Its unforgeability can be formally proved with security model under chosen-message attack. Therefore, its security can be supported by the formal proof. On the other hand, in the proposed scheme, no entangled state is used. It also has better qubit efficiency as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Chaum, D., Heyst, E.: Group signatures. In: Advance in Cryptology- EUROCRYPT’91, pp. 257–265. Springer, Berlin (1991) Chaum, D., Heyst, E.: Group signatures. In: Advance in Cryptology- EUROCRYPT’91, pp. 257–265. Springer, Berlin (1991)
3.
go back to reference Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: delegation of the power to sign messages. IEICE Trans. Fundam. E79-A(5), 1338–1354 (1996) Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: delegation of the power to sign messages. IEICE Trans. Fundam. E79-A(5), 1338–1354 (1996)
4.
go back to reference Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–665 (2019)CrossRef Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–665 (2019)CrossRef
5.
go back to reference Rastegari, P., Berenjkoub, M., Dakhilalian, M., et al.: 2019 Universal designated verifier signature scheme with non-delegatability in the standard model. Inform. Sci. 479, 321–334 (2019)MathSciNetCrossRef Rastegari, P., Berenjkoub, M., Dakhilalian, M., et al.: 2019 Universal designated verifier signature scheme with non-delegatability in the standard model. Inform. Sci. 479, 321–334 (2019)MathSciNetCrossRef
6.
go back to reference Chaum, D.: Blind signatures for untraceable payments. In: Advance in Cryptology-CRYPTO’82, pp. 199–203. Plenum, New York (1983) Chaum, D.: Blind signatures for untraceable payments. In: Advance in Cryptology-CRYPTO’82, pp. 199–203. Plenum, New York (1983)
7.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRef
8.
go back to reference Wang, B., Hu, F., Yao, H., et al.: Prime factorization algorithm based on parameter optimization of ising model. Sci. Rep. 10(1), 1–10 (2020) Wang, B., Hu, F., Yao, H., et al.: Prime factorization algorithm based on parameter optimization of ising model. Sci. Rep. 10(1), 1–10 (2020)
9.
go back to reference Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19(62), 1–17 (2020)ADS Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19(62), 1–17 (2020)ADS
10.
go back to reference Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001) Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)
11.
go back to reference Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRef Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRef
12.
go back to reference Liang, X.Q., Wu, Y.L., Zhang, Y.H., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)CrossRef Liang, X.Q., Wu, Y.L., Zhang, Y.H., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)CrossRef
14.
go back to reference Zheng, T., Chang, Y., Yan, L.L., et al.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)ADSMathSciNetCrossRef Zheng, T., Chang, Y., Yan, L.L., et al.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)ADSMathSciNetCrossRef
15.
go back to reference Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. Plus 136(6), 633 (2021)CrossRef Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. Plus 136(6), 633 (2021)CrossRef
16.
go back to reference Chen, B., Yan, L.: Quantum and semi-quantum blind signature schemes based on entanglement swapping. Int. J. Theor. Phys. 60(10), 4006–4014 (2021)ADSMathSciNetCrossRef Chen, B., Yan, L.: Quantum and semi-quantum blind signature schemes based on entanglement swapping. Int. J. Theor. Phys. 60(10), 4006–4014 (2021)ADSMathSciNetCrossRef
17.
go back to reference Zhang, Y., Xin, X., Li, F.: Secure and efficient quantum designated verifier signature scheme. Mod. Phys. Lett. A 35(18), 2050148 (2020)ADSMathSciNetCrossRef Zhang, Y., Xin, X., Li, F.: Secure and efficient quantum designated verifier signature scheme. Mod. Phys. Lett. A 35(18), 2050148 (2020)ADSMathSciNetCrossRef
18.
go back to reference Xin, X., Wang, Z., Yang, Q.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(3), 79 (2020)ADSMathSciNetCrossRef Xin, X., Wang, Z., Yang, Q.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(3), 79 (2020)ADSMathSciNetCrossRef
19.
go back to reference Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)ADSMathSciNetCrossRef Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)ADSMathSciNetCrossRef
20.
go back to reference Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)MathSciNetCrossRef Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)MathSciNetCrossRef
21.
go back to reference Xin, X., He, Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)ADSCrossRef Xin, X., He, Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)ADSCrossRef
22.
go back to reference He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 26 (2021)ADSMathSciNetCrossRef He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 26 (2021)ADSMathSciNetCrossRef
23.
go back to reference Liu, G., Ma, W.P., Cao, H., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. 58(6), 1999–2008 (2019)MathSciNetCrossRef Liu, G., Ma, W.P., Cao, H., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. 58(6), 1999–2008 (2019)MathSciNetCrossRef
24.
go back to reference Zhou, B.M., Lin, L.D., Wang, W., et al.: Security analysis of particular quantum proxy blind signature against the forgery attack. Int. J. Theor. Phys. 59(2), 465–473 (2020)MathSciNetCrossRef Zhou, B.M., Lin, L.D., Wang, W., et al.: Security analysis of particular quantum proxy blind signature against the forgery attack. Int. J. Theor. Phys. 59(2), 465–473 (2020)MathSciNetCrossRef
25.
go back to reference Ding, L., Xin, X., Yang, Q., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A 37(2), 2250008 (2022)ADSMathSciNetCrossRef Ding, L., Xin, X., Yang, Q., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A 37(2), 2250008 (2022)ADSMathSciNetCrossRef
26.
go back to reference Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quantum Inf. 18(5), 2050025 (2020)MathSciNetCrossRef Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quantum Inf. 18(5), 2050025 (2020)MathSciNetCrossRef
27.
go back to reference Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocol. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRef Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocol. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRef
28.
go back to reference Yang, C.W., Liu, J., Tsai, C.W., et al.: Cryptanalysis of a semi-quantum bi-signature scheme based on w states. Entroy 24(10), 1048 (2022)ADSMathSciNet Yang, C.W., Liu, J., Tsai, C.W., et al.: Cryptanalysis of a semi-quantum bi-signature scheme based on w states. Entroy 24(10), 1048 (2022)ADSMathSciNet
29.
go back to reference Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984) Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)
30.
go back to reference Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefPubMed Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefPubMed
31.
32.
go back to reference Goldreich, O.: Foudations of Cryptography: Basic Applications. Publishing House of Electronics Industry, Beijing (2004) Goldreich, O.: Foudations of Cryptography: Basic Applications. Publishing House of Electronics Industry, Beijing (2004)
33.
go back to reference Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)CrossRef Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)CrossRef
34.
go back to reference Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRef Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRef
35.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 531–536. Cambridge University Press, Cambridge (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 531–536. Cambridge University Press, Cambridge (2000)
Metadata
Title
Secure quantum signature scheme without entangled state
Authors
Tianyuan Zhang
Xiangjun Xin
Lei Sun
Chaoyang Li
Fagen Li
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04257-5

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue