Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

Security analysis of the semi-quantum secret-sharing protocol of specific bits and its improvement

Authors: Fan He, Xiangjun Xin, Chaoyang Li, Fagen Li

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, Tian et al. (Quantum Inf. Process., 20(6), 217(2021)) proposed an efficient semi-quantum secret-sharing protocol of specific bits. In their protocol, the dealer can split a specific secret such that two classical agents can efficiently and corporately reconstruct the secret by applying the simple operations such as Z-base measurement and reflecting operation. The qubit efficiency of their protocol can be up to 50%. Unfortunately, according to our security analysis, their protocol is vulnerable to the eavesdropping attacks. We prove that the eavesdropper can steal the dealer’s secret without being detected by applying the double-controlled NOT attack (DCNA) to the quantum channels. Then, some improvements are proposed, which can overcome the security flaw of the old protocol. We prove the improved protocol has enhanced security against DCNA, intercept–resend attack, entangle–measure attack and Trojan horse attack. In particular, the security proof shows that inserting decoy photons into the quantum message and reordering the quantum sequence is very helpful in detecting the adversary’s entangle–measure attack, even the adversary uses two auxiliary probes to eavesdrop the quantum channel. Furthermore, the improved eavesdropping check strategy can effectively increase the length of the shared secret.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Williams, B.P., Lukens, J.M., Peters, N.A., et al.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99, 062311 (2019)CrossRefADS Williams, B.P., Lukens, J.M., Peters, N.A., et al.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99, 062311 (2019)CrossRefADS
5.
go back to reference Liao, Q., Liu, H., Zhu, L., et al.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103, 032410 (2021)MathSciNetCrossRefADS Liao, Q., Liu, H., Zhu, L., et al.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103, 032410 (2021)MathSciNetCrossRefADS
6.
go back to reference Chen, M.B., Zhang, S., Liu, Lu.: Fair quantum secret sharing based on symmetric bivariate polynomial. Physica A 589, 126673 (2022)MathSciNetCrossRef Chen, M.B., Zhang, S., Liu, Lu.: Fair quantum secret sharing based on symmetric bivariate polynomial. Physica A 589, 126673 (2022)MathSciNetCrossRef
7.
go back to reference Xu, J., Li, X., Han, Y., et al.: Quantitative security analysis of three-level unitary operations in quantum secret sharing without entanglement. Front. Phys. 11, 1213153 (2023)CrossRef Xu, J., Li, X., Han, Y., et al.: Quantitative security analysis of three-level unitary operations in quantum secret sharing without entanglement. Front. Phys. 11, 1213153 (2023)CrossRef
8.
go back to reference Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)CrossRefADS Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)CrossRefADS
9.
go back to reference Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)MathSciNetCrossRef Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)MathSciNetCrossRef
10.
11.
go back to reference Yu, K.F., Gu, J., Hwang, T., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf Process. 16(8), 194 (2017)MathSciNetCrossRefADS Yu, K.F., Gu, J., Hwang, T., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf Process. 16(8), 194 (2017)MathSciNetCrossRefADS
12.
go back to reference Ye, C.Q., Ye, T.Y., He, D., et al.: Multiparty semi-quantum secret sharing with d-Level single-particle states. Int. J. Theor. Phys. 58, 3797–3814 (2019)MathSciNetCrossRef Ye, C.Q., Ye, T.Y., He, D., et al.: Multiparty semi-quantum secret sharing with d-Level single-particle states. Int. J. Theor. Phys. 58, 3797–3814 (2019)MathSciNetCrossRef
13.
go back to reference Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)MathSciNetCrossRef Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)MathSciNetCrossRef
14.
go back to reference Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)MathSciNetCrossRefADS Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)MathSciNetCrossRefADS
15.
go back to reference Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015)MathSciNetCrossRef Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015)MathSciNetCrossRef
16.
go back to reference Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)MathSciNetCrossRef Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)MathSciNetCrossRef
17.
go back to reference Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRef Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRef
18.
go back to reference Zhou, M.K.: Improvement of the semi-quantum secret sharing protocol of specific bits. Int. J. Theor. Phys. 59, 1772–1776 (2020)CrossRef Zhou, M.K.: Improvement of the semi-quantum secret sharing protocol of specific bits. Int. J. Theor. Phys. 59, 1772–1776 (2020)CrossRef
19.
go back to reference Zhi-Gang, G.: Improvement of Gao et al’.s semi-quantum secret sharing protocol. Int. J. Theor. Phys. 59, 930–935 (2020)MathSciNetCrossRef Zhi-Gang, G.: Improvement of Gao et al’.s semi-quantum secret sharing protocol. Int. J. Theor. Phys. 59, 930–935 (2020)MathSciNetCrossRef
20.
go back to reference Hu, W.W., Zhou, R.G., Jia, L.: Semi-quantum secret sharing in high-dimensional quantum system using product states. Chin. J. Phys. 77, 1701–1712 (2022)MathSciNetCrossRef Hu, W.W., Zhou, R.G., Jia, L.: Semi-quantum secret sharing in high-dimensional quantum system using product states. Chin. J. Phys. 77, 1701–1712 (2022)MathSciNetCrossRef
22.
go back to reference Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31, 1750150 (2017)CrossRefADS Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31, 1750150 (2017)CrossRefADS
23.
go back to reference Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(9), 1850117 (2018)MathSciNetCrossRefADS Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(9), 1850117 (2018)MathSciNetCrossRefADS
24.
25.
go back to reference Li, Z., Li, Q., Liu, C., et al.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17, 285 (2018)CrossRefADS Li, Z., Li, Q., Liu, C., et al.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17, 285 (2018)CrossRefADS
26.
go back to reference Xiang, Y., Liu, J., Bai, M.Q., et al.: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58, 2883–2892 (2019)MathSciNetCrossRef Xiang, Y., Liu, J., Bai, M.Q., et al.: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58, 2883–2892 (2019)MathSciNetCrossRef
27.
go back to reference Tsai, C.W., Chang, Y.C., Lai, Y.H., et al.: Cryptanalysis of limited resource semi-quantum secret Sharing. Quantum Inf. Process. 19, 224 (2020)CrossRefADS Tsai, C.W., Chang, Y.C., Lai, Y.H., et al.: Cryptanalysis of limited resource semi-quantum secret Sharing. Quantum Inf. Process. 19, 224 (2020)CrossRefADS
28.
go back to reference Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60, 265–273 (2021)MathSciNetCrossRef Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60, 265–273 (2021)MathSciNetCrossRef
29.
go back to reference Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20, 217 (2021)MathSciNetCrossRefADS Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20, 217 (2021)MathSciNetCrossRefADS
30.
go back to reference Tian, Y., Li, J., Chen, X.B., Ye, C.Q., Li, H.J.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20(6), 217 (2021)MathSciNetCrossRefADS Tian, Y., Li, J., Chen, X.B., Ye, C.Q., Li, H.J.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20(6), 217 (2021)MathSciNetCrossRefADS
31.
go back to reference Lin, P.-H., Hwang, T., Tsai, C.-W.: Double CNOT attack on “Quantum key distribution with limited classical Bob.” Int. J. Quant. Infor. 17(02), 1975001 (2019)MathSciNetCrossRef Lin, P.-H., Hwang, T., Tsai, C.-W.: Double CNOT attack on “Quantum key distribution with limited classical Bob.” Int. J. Quant. Infor. 17(02), 1975001 (2019)MathSciNetCrossRef
32.
go back to reference Gu, J., Hwang, T.: Double C-NOT attack on a single-state semi-quantum key distribution protocol and its improvement. Electronics 11(16), 2522 (2022)CrossRef Gu, J., Hwang, T.: Double C-NOT attack on a single-state semi-quantum key distribution protocol and its improvement. Electronics 11(16), 2522 (2022)CrossRef
33.
go back to reference Gu, J., Lin, P.H., Hwang, T.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol.’ Quantum Inf. Process. 17, 1–8 (2018)MathSciNetCrossRefADS Gu, J., Lin, P.H., Hwang, T.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol.’ Quantum Inf. Process. 17, 1–8 (2018)MathSciNetCrossRefADS
34.
go back to reference Yang, C.W.: Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Inf. Process. 19(2), 50 (2020)MathSciNetCrossRefADS Yang, C.W.: Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Inf. Process. 19(2), 50 (2020)MathSciNetCrossRefADS
35.
go back to reference Tsai, C.-W., Chang, Y.-C., Lai, Y.-H., Yang, C.-W.: Cryptanalysis of limited resource semi-quantum secret sharing. Quantum Inf. Process. 19(8), 224 (2020)CrossRefADS Tsai, C.-W., Chang, Y.-C., Lai, Y.-H., Yang, C.-W.: Cryptanalysis of limited resource semi-quantum secret sharing. Quantum Inf. Process. 19(8), 224 (2020)CrossRefADS
36.
go back to reference Tsai, C.-W., Lin, J., Yang, C.-W.: Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 20(3), 120 (2021)MathSciNetCrossRefADS Tsai, C.-W., Lin, J., Yang, C.-W.: Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 20(3), 120 (2021)MathSciNetCrossRefADS
37.
go back to reference Li, Q., Li, P., Xie, L., Chen, L., Quan, J.: Security analysis and improvement of a semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 21(4), 127 (2022)MathSciNetCrossRefADS Li, Q., Li, P., Xie, L., Chen, L., Quan, J.: Security analysis and improvement of a semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 21(4), 127 (2022)MathSciNetCrossRefADS
38.
go back to reference Bennett, C.H., Brassard, G., Crepeau, C., et al.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)MathSciNetCrossRef Bennett, C.H., Brassard, G., Crepeau, C., et al.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)MathSciNetCrossRef
39.
go back to reference Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)PubMedCrossRefADS Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)PubMedCrossRefADS
40.
go back to reference Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)CrossRefADS Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)CrossRefADS
41.
go back to reference Gisin, N., Ribordy, G.G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)CrossRefADS Gisin, N., Ribordy, G.G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)CrossRefADS
42.
go back to reference Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)CrossRefADS Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)CrossRefADS
43.
go back to reference Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)CrossRefADS Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)CrossRefADS
44.
go back to reference Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “Quantum blind signature based on two-state vector formalism.” Quantum Inf. Process. 12(1), 109–117 (2012)MathSciNetCrossRefADS Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “Quantum blind signature based on two-state vector formalism.” Quantum Inf. Process. 12(1), 109–117 (2012)MathSciNetCrossRefADS
45.
go back to reference Goldreich, O.: Foudations of cryptography: basic applications. Publishing House of Electronics Industry, Beijing (2004) Goldreich, O.: Foudations of cryptography: basic applications. Publishing House of Electronics Industry, Beijing (2004)
46.
go back to reference Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)CrossRef Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)CrossRef
47.
go back to reference Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRef Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRef
Metadata
Title
Security analysis of the semi-quantum secret-sharing protocol of specific bits and its improvement
Authors
Fan He
Xiangjun Xin
Chaoyang Li
Fagen Li
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04255-z

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue