Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2018

06-03-2018

A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

Authors: I. Aviles Santillana, C. Boyer, P. Fernandez Pison, A. Foussat, S. A. E. Langeslag, A. T. Perez Fontenla, E. M. Ruiz Navas, S. Sgobba

Published in: Journal of Materials Engineering and Performance | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ITER magnet system is based on the “cable-in-conduit” conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure resulting from the above treatment is provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference The ITER project, European Fusion Development Agreement (EFDA) (2006) The ITER project, European Fusion Development Agreement (EFDA) (2006)
2.
go back to reference Sborchia C. et al, Overview of ITER Magnet System and European Contribution, in 2011 IEEE/NPSS, 24th Symposium on Fusion Engineering Sborchia C. et al, Overview of ITER Magnet System and European Contribution, in 2011 IEEE/NPSS, 24th Symposium on Fusion Engineering
3.
go back to reference N. Mitchel et al., The ITER Magnets: Design and Construction Status, IEEE Trans. Appl. Supercond., 2012, 22(3), p 4200809CrossRef N. Mitchel et al., The ITER Magnets: Design and Construction Status, IEEE Trans. Appl. Supercond., 2012, 22(3), p 4200809CrossRef
4.
go back to reference W.S. Pellini, Guidelines for Fracture-Safe and Fatigue-Reliable Design of Steel Structures. Applications of Fracture Mechanics and Structural Integrity Technology, Welding Institute, Cambridge, 1983 W.S. Pellini, Guidelines for Fracture-Safe and Fatigue-Reliable Design of Steel Structures. Applications of Fracture Mechanics and Structural Integrity Technology, Welding Institute, Cambridge, 1983
5.
go back to reference S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, ASTM International, West Conshohocken, 1977 S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, ASTM International, West Conshohocken, 1977
6.
go back to reference T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boston, 2005 T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boston, 2005
7.
go back to reference J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks, Journal of Applied Mechanics, 1968, 35, p 379–386CrossRef J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks, Journal of Applied Mechanics, 1968, 35, p 379–386CrossRef
8.
go back to reference V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan, Solidification Cracking in Austenitic Stainless Steel Welds, Sadhana, 2003, 28(3–4), p 359–382CrossRef V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan, Solidification Cracking in Austenitic Stainless Steel Welds, Sadhana, 2003, 28(3–4), p 359–382CrossRef
9.
go back to reference J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, International Materials Reviews, 1991, 36(1), p 16–44CrossRef J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, International Materials Reviews, 1991, 36(1), p 16–44CrossRef
10.
go back to reference ASTM E45-13, Standard Test Methods for Determining the Inclusion Content of Steel. ASTM E45-13, Standard Test Methods for Determining the Inclusion Content of Steel.
11.
go back to reference R.P. Walsh, V.J. Toplosky, K. Han, N.N. Martovetsky, T. Mann, and J.R. Miller, Mechanical Properties of Modified JK2LB for Nb 3 Sn CICC Applications, CEC-ICMC, Tucson (Arizona), 2009 R.P. Walsh, V.J. Toplosky, K. Han, N.N. Martovetsky, T. Mann, and J.R. Miller, Mechanical Properties of Modified JK2LB for Nb 3 Sn CICC Applications, CEC-ICMC, Tucson (Arizona), 2009
12.
go back to reference H. Nakajima et al., Development of Low Carbon and Boron Added 22Mn–13Cr–9Ni–1Mo–0.24N Steel (JK2LB) for Jacket which Undergoes Nb3Sn Heat Treatment, Trans. Appl. Superconduct., 2004, 14(2), p 1145–1148CrossRef H. Nakajima et al., Development of Low Carbon and Boron Added 22Mn–13Cr–9Ni–1Mo–0.24N Steel (JK2LB) for Jacket which Undergoes Nb3Sn Heat Treatment, Trans. Appl. Superconduct., 2004, 14(2), p 1145–1148CrossRef
13.
go back to reference K. Hamada et al., Optimization of JK2LB Chemical Composition for ITER Central Solenoid Conduit Material, Cryogenics, 2007, 47(3), p 174–182CrossRef K. Hamada et al., Optimization of JK2LB Chemical Composition for ITER Central Solenoid Conduit Material, Cryogenics, 2007, 47(3), p 174–182CrossRef
14.
go back to reference ISO 15614-1:2004—Specification and qualification of welding procedures for metallic materials—Welding procedure test—Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys. ISO 15614-1:2004—Specification and qualification of welding procedures for metallic materials—Welding procedure test—Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys.
15.
go back to reference ISO 6947:2011—Welding and allied processes—Welding positions. ISO 6947:2011—Welding and allied processes—Welding positions.
16.
go back to reference ISO 4063:2009—Welding and allied processes—Nomenclature of processes and reference numbers. ISO 4063:2009—Welding and allied processes—Nomenclature of processes and reference numbers.
17.
go back to reference ASTM E1820:01—Standard Test Method for Measurement of Fracture Toughness. ASTM E1820:01—Standard Test Method for Measurement of Fracture Toughness.
18.
go back to reference ASTM E1823—Standard Terminology Relating to Fatigue and Fracture Testing ASTM E1823—Standard Terminology Relating to Fatigue and Fracture Testing
19.
go back to reference K. Iida and A.J. McEvily, Ed., Advanced Materials for Severe Service Applications, Springer, Berlin, 2012 K. Iida and A.J. McEvily, Ed., Advanced Materials for Severe Service Applications, Springer, Berlin, 2012
20.
go back to reference X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Engineering Fracture Mechanics, 2012, 85, p 1–46CrossRef X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Engineering Fracture Mechanics, 2012, 85, p 1–46CrossRef
21.
go back to reference S. Kuimalee et al., Isothermal Phase Transformation Sequence in Fe–22wt%Cr–3.2wt%Mo–6.2wt%Ni–0.037%C Cast Duplex Stainless Steel, Chiang MaiJ. Sci., 2011, 38(1), p 47–55 S. Kuimalee et al., Isothermal Phase Transformation Sequence in Fe–22wt%Cr–3.2wt%Mo–6.2wt%Ni–0.037%C Cast Duplex Stainless Steel, Chiang MaiJ. Sci., 2011, 38(1), p 47–55
22.
go back to reference Y. Song, T.N. Baker, and N.A. McPherson, A Study of Precipitation 316LN Precipitation in As-Welded 316LN Plate Using 316L/317L Weld Metal, Materials Science and Engineering: A, 1996, 212(2), p 228–234CrossRef Y. Song, T.N. Baker, and N.A. McPherson, A Study of Precipitation 316LN Precipitation in As-Welded 316LN Plate Using 316L/317L Weld Metal, Materials Science and Engineering: A, 1996, 212(2), p 228–234CrossRef
23.
go back to reference Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang et al., Precipitation and Hot Deformation Behavior of Austenitic Heat-Resistant Steels: A Review, J. Mater. Sci. Technol., 2017, 33, p 1448–1456CrossRef Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang et al., Precipitation and Hot Deformation Behavior of Austenitic Heat-Resistant Steels: A Review, J. Mater. Sci. Technol., 2017, 33, p 1448–1456CrossRef
24.
go back to reference V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Microstructural Evolution During Creep of 316LN Stainless Steel Multi-pass Weld Joints, Materials Science and Engineering: A, 2014, 607, p 138–144CrossRef V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Microstructural Evolution During Creep of 316LN Stainless Steel Multi-pass Weld Joints, Materials Science and Engineering: A, 2014, 607, p 138–144CrossRef
Metadata
Title
A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds
Authors
I. Aviles Santillana
C. Boyer
P. Fernandez Pison
A. Foussat
S. A. E. Langeslag
A. T. Perez Fontenla
E. M. Ruiz Navas
S. Sgobba
Publication date
06-03-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3266-1

Other articles of this Issue 4/2018

Journal of Materials Engineering and Performance 4/2018 Go to the issue

Premium Partners