Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

13-07-2019

A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations

Authors: Ali Samii, Kazbek Kazhyken, Craig Michoski, Clint Dawson

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An explicit implementation of the hybridizable discontinuous Galerkin (HDG) method for solving the nonlinear shallow water equations is presented. We follow the common construction of the implicit HDG for nonlinear conservation laws, and then explain the differences between the explicit formulation and the implicit version. For the implicit implementation, we use the approximate traces of the conserved variables (\({\widehat{\varvec{q}}}\)) to express the numerical fluxes in each element. Next, we impose the conservation of the numerical fluxes via a global system of equations. Using the Newton–Raphson method, this global system can be solely expressed in terms of the increments of the approximate traces in each iteration. For the explicit method, having \({\varvec{q}}_h\) at each time level, we first obtain \({\widehat{\varvec{q}}}_h\) such that the conservation of the numerical flux is satisfied. This will result in a nonlinear system of equations which is local to each edge of the mesh skeleton. Having the solution (\({\varvec{q}}_h\), \(\widehat{{\varvec{q}}}_h\)) for the previous time step, we use the Runge–Kutta time integration method to obtain \({\varvec{q}}_h\) in the next time step. Hence, the introduced explicit technique is based on local operations over the faces and elements of the mesh. Using different numerical examples, we show the optimal convergence of the solution of the explicit and implicit approach in \(L^2\) norm. Finally, through numerical experiments, we discuss the advantages of the implicit and explicit techniques from the computational cost point of view.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peraire, J., Zienkiewicz, O.C., Morgan, K.: Shallow water problems: a general explicit formulation. Int. J. Numer. Methods Eng. 22(3), 547–574 (1986)MathSciNetMATHCrossRef Peraire, J., Zienkiewicz, O.C., Morgan, K.: Shallow water problems: a general explicit formulation. Int. J. Numer. Methods Eng. 22(3), 547–574 (1986)MathSciNetMATHCrossRef
2.
go back to reference Kawahara, M., Takeuchi, N., Yoshida, T.: Two step explicit finite element method for tsunami wave propagation analysis. Int. J. Numer. Methods Eng. 12(2), 331–351 (1978)MATHCrossRef Kawahara, M., Takeuchi, N., Yoshida, T.: Two step explicit finite element method for tsunami wave propagation analysis. Int. J. Numer. Methods Eng. 12(2), 331–351 (1978)MATHCrossRef
3.
go back to reference Kawahara, M., Hirano, H., Tsubota, K., Inagaki, K.: Selective lumping finite element method for shallow water flow. Int. J. Numer. Methods Fluids 2(1), 89–112 (1982)MATHCrossRef Kawahara, M., Hirano, H., Tsubota, K., Inagaki, K.: Selective lumping finite element method for shallow water flow. Int. J. Numer. Methods Fluids 2(1), 89–112 (1982)MATHCrossRef
4.
go back to reference Lynch, D.R., Gray, W.G.: A wave equation model for finite element tidal computations. Comput. Fluids 7(3), 207–228 (1979)MATHCrossRef Lynch, D.R., Gray, W.G.: A wave equation model for finite element tidal computations. Comput. Fluids 7(3), 207–228 (1979)MATHCrossRef
5.
go back to reference Ramaswamy, B., Kawahara, M.: Arbitrary Lagrangian–Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7(10), 1053–1075 (1987)MATHCrossRef Ramaswamy, B., Kawahara, M.: Arbitrary Lagrangian–Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7(10), 1053–1075 (1987)MATHCrossRef
6.
go back to reference Williams, R.T., Zienkiewicz, O.C.: Improved finite element forms for the shallow-water wave equations. Int. J. Numer. Methods Fluids 1(1), 81–97 (1981)MATHCrossRef Williams, R.T., Zienkiewicz, O.C.: Improved finite element forms for the shallow-water wave equations. Int. J. Numer. Methods Fluids 1(1), 81–97 (1981)MATHCrossRef
7.
go back to reference Williams, R.T.: On the formulation of finite-element prediction models. Mon. Weather Rev. 109(3), 463–466 (1981)CrossRef Williams, R.T.: On the formulation of finite-element prediction models. Mon. Weather Rev. 109(3), 463–466 (1981)CrossRef
8.
go back to reference Chippada, S., Dawson, C.N., Martinez, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations i: continuous-time a priori error estimates. SIAM J. Numer. Anal. 35(2), 692–711 (1998)MathSciNetMATHCrossRef Chippada, S., Dawson, C.N., Martinez, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations i: continuous-time a priori error estimates. SIAM J. Numer. Anal. 35(2), 692–711 (1998)MathSciNetMATHCrossRef
9.
go back to reference Chippada, S., Dawson, C.N., Martinez-Canales, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations, part ii: discrete-time a priori error estimates. SIAM J. Numer. Anal. 36(1), 226–250 (1998)MATHCrossRef Chippada, S., Dawson, C.N., Martinez-Canales, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations, part ii: discrete-time a priori error estimates. SIAM J. Numer. Anal. 36(1), 226–250 (1998)MATHCrossRef
10.
go back to reference Kinnmark, I.: The shallow water wave equations: formulation, analysis and application, Ph.D. Thesis, Department of Civil Engineering. Princeton University (1984) Kinnmark, I.: The shallow water wave equations: formulation, analysis and application, Ph.D. Thesis, Department of Civil Engineering. Princeton University (1984)
11.
go back to reference Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow-water models based on the wave continuity equation. Comput. Fluids 23(3), 523–538 (1994)MATHCrossRef Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow-water models based on the wave continuity equation. Comput. Fluids 23(3), 523–538 (1994)MATHCrossRef
12.
go back to reference Luettich Jr, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, DTIC Document (1992) Luettich Jr, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, DTIC Document (1992)
13.
go back to reference Chavent, G., Salzano, G.: A finite-element method for the 1-D water flooding problem with gravity. J. Comput. Phys. 45(3), 307–344 (1982)MathSciNetMATHCrossRef Chavent, G., Salzano, G.: A finite-element method for the 1-D water flooding problem with gravity. J. Comput. Phys. 45(3), 307–344 (1982)MathSciNetMATHCrossRef
14.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH
15.
go back to reference Chen, Z., Cockburn, B., Jerome, J.W., Shu, C.-W.: Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation. VLSI Des. 3(2), 145–158 (1995)CrossRef Chen, Z., Cockburn, B., Jerome, J.W., Shu, C.-W.: Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation. VLSI Des. 3(2), 145–158 (1995)CrossRef
16.
go back to reference Mirabito, C., Dawson, C., Aizinger, V.: An a priori error estimate for the local discontinuous Galerkin method applied to two-dimensional shallow water and morphodynamic flow. Numer. Methods Partial Differ. Equ. 31(2), 397–421 (2015)MathSciNetMATHCrossRef Mirabito, C., Dawson, C., Aizinger, V.: An a priori error estimate for the local discontinuous Galerkin method applied to two-dimensional shallow water and morphodynamic flow. Numer. Methods Partial Differ. Equ. 31(2), 397–421 (2015)MathSciNetMATHCrossRef
17.
go back to reference Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3–4), 205–227 (1999)MathSciNetMATHCrossRef Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3–4), 205–227 (1999)MathSciNetMATHCrossRef
18.
go back to reference Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191(41), 4721–4746 (2002)MathSciNetMATHCrossRef Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191(41), 4721–4746 (2002)MathSciNetMATHCrossRef
19.
go back to reference Dawson, C., Proft, J.: Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water. Comput. Methods Appl. Mech. Eng. 192(47), 5123–5145 (2003)MathSciNetMATHCrossRef Dawson, C., Proft, J.: Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water. Comput. Methods Appl. Mech. Eng. 192(47), 5123–5145 (2003)MathSciNetMATHCrossRef
20.
go back to reference Giraldo, F.X., Warburton, T.: A high-order triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 56(7), 899–925 (2008)MathSciNetMATHCrossRef Giraldo, F.X., Warburton, T.: A high-order triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 56(7), 899–925 (2008)MathSciNetMATHCrossRef
21.
go back to reference Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002)CrossRef Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002)CrossRef
22.
go back to reference Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(21), 1766–1774 (2009)MATHCrossRef Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(21), 1766–1774 (2009)MATHCrossRef
23.
go back to reference Dawson, C., Proft, J.: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput. Methods Appl. Mech. Eng. 193(3), 289–318 (2004)MathSciNetMATHCrossRef Dawson, C., Proft, J.: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput. Methods Appl. Mech. Eng. 193(3), 289–318 (2004)MathSciNetMATHCrossRef
24.
go back to reference Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22(1–3), 245–267 (2005)MathSciNetMATHCrossRef Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22(1–3), 245–267 (2005)MathSciNetMATHCrossRef
25.
go back to reference Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734–746 (2007)MathSciNetMATHCrossRef Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734–746 (2007)MathSciNetMATHCrossRef
26.
go back to reference Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17), 1548–1562 (2009)MathSciNetMATHCrossRef Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17), 1548–1562 (2009)MathSciNetMATHCrossRef
27.
go back to reference Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58(1), 1–25 (2008)MathSciNetMATHCrossRef Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58(1), 1–25 (2008)MathSciNetMATHCrossRef
28.
go back to reference Beisiegel, N., Behrens, J.: Quasi-nodal third-order Bernstein polynomials in a discontinuous Galerkin model for flooding and drying. Environ. Earth Sci. 74(11), 7275–7284 (2015)CrossRef Beisiegel, N., Behrens, J.: Quasi-nodal third-order Bernstein polynomials in a discontinuous Galerkin model for flooding and drying. Environ. Earth Sci. 74(11), 7275–7284 (2015)CrossRef
29.
go back to reference Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011)MathSciNetMATHCrossRef Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011)MathSciNetMATHCrossRef
30.
go back to reference Läuter, M., Giraldo, F.X., Handorf, D., Dethloff, K.: A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates. J. Comput. Phys. 227(24), 10226–10242 (2008)MathSciNetMATHCrossRef Läuter, M., Giraldo, F.X., Handorf, D., Dethloff, K.: A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates. J. Comput. Phys. 227(24), 10226–10242 (2008)MathSciNetMATHCrossRef
31.
go back to reference Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)MathSciNetMATHCrossRef Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)MathSciNetMATHCrossRef
32.
go back to reference Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011)CrossRef Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011)CrossRef
33.
go back to reference Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217, 139–152 (2012)MathSciNetMATHCrossRef Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217, 139–152 (2012)MathSciNetMATHCrossRef
34.
go back to reference Meixner, J., Dietrich, J.C., Dawson, C., Zijlema, M., Holthuijsen, L.H.: A discontinuous Galerkin coupled wave propagation/circulation model. J. Sci. Comput. 59(2), 334–370 (2014)MathSciNetMATHCrossRef Meixner, J., Dietrich, J.C., Dawson, C., Zijlema, M., Holthuijsen, L.H.: A discontinuous Galerkin coupled wave propagation/circulation model. J. Sci. Comput. 59(2), 334–370 (2014)MathSciNetMATHCrossRef
35.
go back to reference Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009)MathSciNetMATHCrossRef Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009)MathSciNetMATHCrossRef
36.
go back to reference Wirasaet, D., Kubatko, E.J., Michoski, C.E., Tanaka, S., Westerink, J.J., Dawson, C.: Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)MathSciNetMATHCrossRef Wirasaet, D., Kubatko, E.J., Michoski, C.E., Tanaka, S., Westerink, J.J., Dawson, C.: Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)MathSciNetMATHCrossRef
37.
go back to reference Dawson, C., Trahan, C.J., Kubatko, E.J., Westerink, J.J.: A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal ocean modeling. Comput. Methods Appl. Mech. Eng. 259, 154–165 (2013)MathSciNetMATHCrossRef Dawson, C., Trahan, C.J., Kubatko, E.J., Westerink, J.J.: A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal ocean modeling. Comput. Methods Appl. Mech. Eng. 259, 154–165 (2013)MathSciNetMATHCrossRef
38.
go back to reference Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATHCrossRef Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATHCrossRef
39.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)MathSciNetMATHCrossRef Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)MathSciNetMATHCrossRef
40.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)MathSciNetMATHCrossRef Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)MathSciNetMATHCrossRef
41.
go back to reference Peraire, J., Nguyen, N., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 363 (2010) Peraire, J., Nguyen, N., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 363 (2010)
42.
go back to reference Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg-de Vries equation. J. Sci. Comput. 68(1), 191–212 (2016)MathSciNetMATHCrossRef Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg-de Vries equation. J. Sci. Comput. 68(1), 191–212 (2016)MathSciNetMATHCrossRef
43.
go back to reference Arabshahi, H.: Space–time hybridized discontinuous Galerkin methods for shallow water equations. Ph.D. thesis, The University of Texas at Austin 8 (2016) Arabshahi, H.: Space–time hybridized discontinuous Galerkin methods for shallow water equations. Ph.D. thesis, The University of Texas at Austin 8 (2016)
44.
go back to reference Bui-Thanh, T.: Hybridized discontinuous Galerkin methods for linearized shallow water equations. SIAM J. Sci. Comput. Accepted (2016) Bui-Thanh, T.: Hybridized discontinuous Galerkin methods for linearized shallow water equations. SIAM J. Sci. Comput. Accepted (2016)
45.
go back to reference Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)MathSciNetMATHCrossRef Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)MathSciNetMATHCrossRef
46.
go back to reference Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2015) Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2015)
47.
go back to reference Samii, A.: A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. Ph.D. thesis (2017) Samii, A.: A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. Ph.D. thesis (2017)
48.
go back to reference Samii, A., Dawson, C.: An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput. Methods Appl. Mech. Eng. 330, 447–470 (2018)MathSciNetCrossRef Samii, A., Dawson, C.: An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput. Methods Appl. Mech. Eng. 330, 447–470 (2018)MathSciNetCrossRef
49.
go back to reference Lannes, D.: The Water Waves Problem—Mathematical Analysis and Assymptotics. American Mathematical Society, Providence (2013)MATH Lannes, D.: The Water Waves Problem—Mathematical Analysis and Assymptotics. American Mathematical Society, Providence (2013)MATH
50.
go back to reference Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21(1), 016601 (2009)MATHCrossRef Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21(1), 016601 (2009)MATHCrossRef
51.
go back to reference Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)MathSciNetMATHCrossRef Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)MathSciNetMATHCrossRef
52.
go back to reference LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)MATHCrossRef LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)MATHCrossRef
53.
go back to reference Marras, S., Kopera, M.A., Constantinescu, E.M., Suckale, J., Giraldo, F.X.: A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration. arXiv e-prints: arXiv:1607.04547 (2016) Marras, S., Kopera, M.A., Constantinescu, E.M., Suckale, J., Giraldo, F.X.: A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration. arXiv e-prints: arXiv:​1607.​04547 (2016)
54.
go back to reference Samii, A., Michoski, C., Dawson, C.: A parallel and adaptive hybridized discontinuous Galerkin method for anisotropic nonhomogeneous diffusion. Comput. Methods Appl. Mech. Eng. 304, 118–139 (2016)MathSciNetMATHCrossRef Samii, A., Michoski, C., Dawson, C.: A parallel and adaptive hybridized discontinuous Galerkin method for anisotropic nonhomogeneous diffusion. Comput. Methods Appl. Mech. Eng. 304, 118–139 (2016)MathSciNetMATHCrossRef
55.
go back to reference Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)MathSciNetMATHCrossRef Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)MathSciNetMATHCrossRef
56.
go back to reference Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal. II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)MathSciNetMATHCrossRef Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal. II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)MathSciNetMATHCrossRef
57.
go back to reference Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2016) Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. http://​www.​mcs.​anl.​gov/​petsc (2016)
60.
go back to reference Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH
61.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef
62.
go back to reference Ippen, A.T.: Mechanics of supercritical flow. Trans. Am. Soc. Civ. Eng. 116, 268–295 (1951) Ippen, A.T.: Mechanics of supercritical flow. Trans. Am. Soc. Civ. Eng. 116, 268–295 (1951)
63.
go back to reference Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1), 437–451 (2006)MATHCrossRef Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1), 437–451 (2006)MATHCrossRef
Metadata
Title
A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations
Authors
Ali Samii
Kazbek Kazhyken
Craig Michoski
Clint Dawson
Publication date
13-07-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01007-z

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner