Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

24-05-2019

An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions

Authors: Xiangcheng Zheng, Huan Liu, Hong Wang, Hongfei Fu

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Crank–Nicolson finite volume approximation for the nonlinear distributed-order space-fractional diffusion equations in three space dimensions is developed, and a resulting nonlinear algebra system with Kronecker-product type coefficient matrix is formulated. The finite volume scheme is proved to be unconditionally stable and convergent with second-order accuracy in terms of the step sizes in time and distributed orders, and \(\min \{3-{\hat{\alpha }}, 3-{\hat{\beta }}, 3-{\hat{\gamma \}}}\)-order accuracy in space with respect to a discrete norm. At each time step, the Newton’s iterative method is employed as a nonlinear solver to handle the resulting nonlinear algebra system. Moreover, during each Newton’s iteration, an efficient biconjugate gradient stabilized method (BiCGSTAB) is developed, in which both the matrix storage and matrix-vector multiplications are efficiently conducted by using the Toeplitz sub-structure of the coefficient matrices. It is proved that the BiCGSTAB method only requires the storage of \(\mathcal {O}(N)\) and the computational cost of \(\mathcal {O}(N \log N)\) per iteration, while no accuracy is lost compared with the Gaussian elimination method. Thus, an efficient finite volume method is developed, and it is well suitable for large-scale modeling and simulations, especially for multi-dimensional problems. Numerical experiments are presented to verify the theoretical results and show strong potential of the efficient method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef
2.
go back to reference Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)CrossRef Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)CrossRef
3.
go back to reference del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef
4.
go back to reference Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J Comput. Appl. Math. 225, 96–104 (2009)MathSciNetCrossRefMATH Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J Comput. Appl. Math. 225, 96–104 (2009)MathSciNetCrossRefMATH
5.
go back to reference Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH
6.
go back to reference Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-d fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRefMATH Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-d fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRefMATH
7.
go back to reference Feng, L., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)MathSciNetMATH Feng, L., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)MathSciNetMATH
8.
go back to reference Fu, H., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)MathSciNetCrossRefMATH Fu, H., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)MathSciNetCrossRefMATH
9.
go back to reference Fu, H., Sun, Y., Wang, H., Zheng, X.: Stability and convergence of a Crank–Nicolson finite volume method for space fractional diffusion equations. Appl. Numer. Math. 139, 38–51 (2019)MathSciNetCrossRefMATH Fu, H., Sun, Y., Wang, H., Zheng, X.: Stability and convergence of a Crank–Nicolson finite volume method for space fractional diffusion equations. Appl. Numer. Math. 139, 38–51 (2019)MathSciNetCrossRefMATH
10.
go back to reference Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)MathSciNetCrossRefMATH Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)MathSciNetCrossRefMATH
11.
go back to reference Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefMATH Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefMATH
12.
go back to reference Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRefMATH
13.
go back to reference Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 95, 1340–1361 (2018)MathSciNetCrossRef Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 95, 1340–1361 (2018)MathSciNetCrossRef
14.
go back to reference Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci. Comput. 39, A1003–A1037 (2017)MathSciNetCrossRefMATH Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci. Comput. 39, A1003–A1037 (2017)MathSciNetCrossRefMATH
15.
16.
go back to reference Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)MathSciNetCrossRefMATH Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)MathSciNetCrossRefMATH
17.
go back to reference Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, 5018–5034 (2017)MathSciNetCrossRefMATH Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, 5018–5034 (2017)MathSciNetCrossRefMATH
18.
go back to reference Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH
19.
go back to reference Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)MathSciNetCrossRefMATH Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)MathSciNetCrossRefMATH
20.
go back to reference Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)MathSciNetMATH Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)MathSciNetMATH
21.
go back to reference Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH
22.
go back to reference Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43 (2011) Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43 (2011)
23.
go back to reference Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
24.
go back to reference Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
25.
go back to reference Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRefMATH Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRefMATH
26.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
27.
go back to reference Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics,Texts in Applied Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)MATH Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics,Texts in Applied Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)MATH
28.
29.
go back to reference Simmons, A., Yang, Q., Moroney, T.: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 335, 747–759 (2017)MathSciNetCrossRefMATH Simmons, A., Yang, Q., Moroney, T.: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 335, 747–759 (2017)MathSciNetCrossRefMATH
30.
go back to reference Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
31.
go back to reference Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MathSciNetCrossRefMATH Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MathSciNetCrossRefMATH
32.
go back to reference Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRefMATH Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRefMATH
33.
go back to reference Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetCrossRefMATH Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetCrossRefMATH
34.
go back to reference Wang, H., Wang, K.: An \(O(N \log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MathSciNetCrossRefMATH Wang, H., Wang, K.: An \(O(N \log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MathSciNetCrossRefMATH
35.
go back to reference Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH
36.
go back to reference Yuste, S.B., Quintana-Murillo, J.: A finite difference scheme with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)MathSciNetCrossRefMATH Yuste, S.B., Quintana-Murillo, J.: A finite difference scheme with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)MathSciNetCrossRefMATH
37.
go back to reference Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)MathSciNetCrossRefMATH Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)MathSciNetCrossRefMATH
Metadata
Title
An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
Authors
Xiangcheng Zheng
Huan Liu
Hong Wang
Hongfei Fu
Publication date
24-05-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00979-2

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner