Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

05-07-2019

A High-Order Kernel-Free Boundary Integral Method for the Biharmonic Equation on Irregular Domains

Authors: Yaning Xie, Wenjun Ying, Wei-Cheng Wang

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work proposes second-order and fourth-order versions of a Cartesian grid based kernel-free boundary integral (KFBI) method for the biharmonic equation on both bounded irregular domains and singly periodic irregular domains. It is further development of the previous KFBI method for second-order elliptic PDEs. It reformulates boundary value problems of the fourth-order PDE as boundary integral equations of the first kind but the solution never needs to know the fundamental solution or Green’s function of the elliptic operator. Evaluation of boundary or volume integrals in the solution of boundary integral equations is made by solving equivalent interface problems on Cartesian grids with standard finite difference methods and fast Fourier transform based solvers. The work decomposes the biharmonic equation into two Poisson equations. It assumes the solution to one Poisson equation, which has no boundary conditions, as the sum of a volume integral with a double layer boundary integral, and applies Green’s third identity to derive a scalar boundary integral equation from the other Poisson equation that are subject to two boundary conditions. In the solution of the scalar boundary integral equation, each volume or boundary integral is evaluated with the KFBI method. Numerical examples are presented to demonstrate the solution accuracy and algorithm efficiency. A remarkable point of the work is that the nine-point compact difference scheme in dealing with each split second-order elliptic interface problem on irregular domains yields fourth-order accurate solution for the biharmonic equation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adini, A., Clough, R.W.: Analysis of Plate Bending by the Finite Element Method. University of California, Berkeley (1960) Adini, A., Clough, R.W.: Analysis of Plate Bending by the Finite Element Method. University of California, Berkeley (1960)
2.
go back to reference Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differ. Equ. 13(4), 375–391 (1997)MathSciNetMATHCrossRef Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differ. Equ. 13(4), 375–391 (1997)MathSciNetMATHCrossRef
3.
go back to reference Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid dynamics. In: Hewitt, B.L., Illingworth, C.R., Lock, R.C., Mangler, K.W., McDonnel, J.H., Richards, C., Walkden, F. (eds.) Computational Methods and Problems in Aeronautical Fluid Dynamics, pp. 158–197. Academic Press, London (1976) Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid dynamics. In: Hewitt, B.L., Illingworth, C.R., Lock, R.C., Mangler, K.W., McDonnel, J.H., Richards, C., Walkden, F. (eds.) Computational Methods and Problems in Aeronautical Fluid Dynamics, pp. 158–197. Academic Press, London (1976)
6.
go back to reference Bialecki, B., Karageorghis, A.: Spectral chebyshev collocation for the Poisson and biharmonic equations. SIAM J. Sci. Comput. 32(5), 2995–3019 (2010)MathSciNetMATHCrossRef Bialecki, B., Karageorghis, A.: Spectral chebyshev collocation for the Poisson and biharmonic equations. SIAM J. Sci. Comput. 32(5), 2995–3019 (2010)MathSciNetMATHCrossRef
7.
go back to reference Bjørstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20(1), 59–71 (1983)MathSciNetMATHCrossRef Bjørstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20(1), 59–71 (1983)MathSciNetMATHCrossRef
8.
go back to reference Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques: Theory and Applications in Engineering. Springer, New York (2012)MATH Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques: Theory and Applications in Engineering. Springer, New York (2012)MATH
9.
go back to reference Brenner, S., Sung, L.: C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23(1–3), 83–118 (2005)MATHCrossRef Brenner, S., Sung, L.: C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23(1–3), 83–118 (2005)MATHCrossRef
10.
11.
go back to reference Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7(4), 627–656 (1970)MathSciNetMATHCrossRef Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7(4), 627–656 (1970)MathSciNetMATHCrossRef
12.
go back to reference Camp, C.V.: Solution of the nonhomogeneous biharmonic equation by the boundary element method. Ph.D. thesis, Oklahoma State University (1987) Camp, C.V.: Solution of the nonhomogeneous biharmonic equation by the boundary element method. Ph.D. thesis, Oklahoma State University (1987)
13.
go back to reference Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18(6), 1571–1582 (1997)MathSciNetMATHCrossRef Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18(6), 1571–1582 (1997)MathSciNetMATHCrossRef
14.
go back to reference Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv. Comput. Math. 29(2), 113–133 (2008)MathSciNetMATHCrossRef Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv. Comput. Math. 29(2), 113–133 (2008)MathSciNetMATHCrossRef
15.
go back to reference Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)MathSciNetMATHCrossRef Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)MathSciNetMATHCrossRef
16.
go back to reference Cheng, X.L., Han, W., Huang, H.C.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)MathSciNetMATHCrossRef Cheng, X.L., Han, W., Huang, H.C.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)MathSciNetMATHCrossRef
17.
go back to reference Christiansen, S.: Integral equations without a unique solution can be made useful for solving some plane harmonic problems. IMA J. Appl. Math. 16(2), 143–159 (1975)MathSciNetMATHCrossRef Christiansen, S.: Integral equations without a unique solution can be made useful for solving some plane harmonic problems. IMA J. Appl. Math. 16(2), 143–159 (1975)MathSciNetMATHCrossRef
18.
go back to reference Christiansen, S.: Derivation and analytical investigation of three direct boundary integral equations for the fundamental biharmonic problem. J. Comput. Appl. Math. 91(2), 231–247 (1998)MathSciNetMATHCrossRef Christiansen, S.: Derivation and analytical investigation of three direct boundary integral equations for the fundamental biharmonic problem. J. Comput. Appl. Math. 91(2), 231–247 (1998)MathSciNetMATHCrossRef
19.
go back to reference Christiansen, S., Hougaard, P.: An investigation of a pair of integral equations for the biharmonic problem. IMA J. Appl. Math. 22(1), 15–27 (1978)MathSciNetMATHCrossRef Christiansen, S., Hougaard, P.: An investigation of a pair of integral equations for the biharmonic problem. IMA J. Appl. Math. 22(1), 15–27 (1978)MathSciNetMATHCrossRef
20.
go back to reference Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH
21.
go back to reference Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145 (1974) Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145 (1974)
22.
go back to reference Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40(1–3), 141–187 (2009)MathSciNetMATHCrossRef Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40(1–3), 141–187 (2009)MathSciNetMATHCrossRef
23.
go back to reference Collatz, L.: The Numerical Treatment of Differential Equations, vol. 60. Springer, New York (2012) Collatz, L.: The Numerical Treatment of Differential Equations, vol. 60. Springer, New York (2012)
24.
go back to reference Conte, S.D., Dames, R.T.: An alternating direction method for solving the biharmonic equation. Math. Tables Other Aids Comput. 12(63), 198–205 (1958)MathSciNetMATHCrossRef Conte, S.D., Dames, R.T.: An alternating direction method for solving the biharmonic equation. Math. Tables Other Aids Comput. 12(63), 198–205 (1958)MathSciNetMATHCrossRef
25.
go back to reference Costabel, M., Lusikka, I., Saranen, J.: Comparison of three boundary element approaches for the solution of the clamped plate problem. In: Ciarlet, P.G., Lions, J.L. (eds.) Boundary Elements IX, vol. 2, pp. 19–34. Springer, Berlin (1987) Costabel, M., Lusikka, I., Saranen, J.: Comparison of three boundary element approaches for the solution of the clamped plate problem. In: Ciarlet, P.G., Lions, J.L. (eds.) Boundary Elements IX, vol. 2, pp. 19–34. Springer, Berlin (1987)
26.
go back to reference Costabel, M., Saranen, J.: Boundary element analysis of a direct method for the biharmonic Dirichlet problem. In: The Gohberg anniversary collection, pp. 569–587 (1989) Costabel, M., Saranen, J.: Boundary element analysis of a direct method for the biharmonic Dirichlet problem. In: The Gohberg anniversary collection, pp. 569–587 (1989)
27.
28.
29.
30.
go back to reference Fairweather, G., Gourlay, A., Mitchell, A.: Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type. Numer. Math. 10(1), 56–66 (1967)MathSciNetMATHCrossRef Fairweather, G., Gourlay, A., Mitchell, A.: Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type. Numer. Math. 10(1), 56–66 (1967)MathSciNetMATHCrossRef
31.
go back to reference Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69 (1998)MathSciNetMATHCrossRef Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69 (1998)MathSciNetMATHCrossRef
32.
33.
go back to reference Fuglede, B.: On a direct method of integral equations for solving the biharmonic Dirichlet problem. Zeitschrift für Angewandte Mathematik und Mechanik 61(9), 449–459 (1981)MathSciNetMATHCrossRef Fuglede, B.: On a direct method of integral equations for solving the biharmonic Dirichlet problem. Zeitschrift für Angewandte Mathematik und Mechanik 61(9), 449–459 (1981)MathSciNetMATHCrossRef
34.
go back to reference Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21(2), 167–212 (1979)MathSciNetMATHCrossRef Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21(2), 167–212 (1979)MathSciNetMATHCrossRef
35.
go back to reference Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Physica D 60, 216–225 (1992)MathSciNetMATHCrossRef Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Physica D 60, 216–225 (1992)MathSciNetMATHCrossRef
36.
go back to reference Greengard, L., Kropinski, M.C.: An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM J. Sci. Comput. 20(1), 318–336 (1998)MathSciNetMATHCrossRef Greengard, L., Kropinski, M.C.: An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM J. Sci. Comput. 20(1), 318–336 (1998)MathSciNetMATHCrossRef
37.
go back to reference Hadjidimos, A.: The numerical solution of a model problem biharmonic equation by using extrapolated alternating direction implicit methods. Numer. Math. 17(4), 301–317 (1971)MathSciNetMATHCrossRef Hadjidimos, A.: The numerical solution of a model problem biharmonic equation by using extrapolated alternating direction implicit methods. Numer. Math. 17(4), 301–317 (1971)MathSciNetMATHCrossRef
38.
go back to reference Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12(5), 1162–1172 (1991)MathSciNetMATHCrossRef Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12(5), 1162–1172 (1991)MathSciNetMATHCrossRef
40.
41.
go back to reference Huang, S., Liu, Y.: A fast multipole boundary element method for solving the thin plate bending problem. Eng. Anal. Bound. Elem. 37(6), 967–976 (2013)MathSciNetMATHCrossRef Huang, S., Liu, Y.: A fast multipole boundary element method for solving the thin plate bending problem. Eng. Anal. Bound. Elem. 37(6), 967–976 (2013)MathSciNetMATHCrossRef
42.
go back to reference Huang, W., Tang, T.: Pseudospectral solutions for steady motion of a viscous fluid inside a circular boundary. Appl. Numer. Math. 33(1–4), 167–173 (2000)MathSciNetMATHCrossRef Huang, W., Tang, T.: Pseudospectral solutions for steady motion of a viscous fluid inside a circular boundary. Appl. Numer. Math. 33(1–4), 167–173 (2000)MathSciNetMATHCrossRef
43.
go back to reference Jaswon, M., Maiti, M.: An integral equation formulation of plate bending problems. J. Eng. Math. 2(1), 83–93 (1968)MATHCrossRef Jaswon, M., Maiti, M.: An integral equation formulation of plate bending problems. J. Eng. Math. 2(1), 83–93 (1968)MATHCrossRef
44.
go back to reference Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics, vol. 132. Academic Press, London (1977)MATH Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics, vol. 132. Academic Press, London (1977)MATH
45.
47.
go back to reference Jeon, Y.: New indirect scalar boundary integral equation formulas for the biharmonic equation. J. Comput. Appl. Math. 135(2), 313–324 (2001)MathSciNetMATHCrossRef Jeon, Y.: New indirect scalar boundary integral equation formulas for the biharmonic equation. J. Comput. Appl. Math. 135(2), 313–324 (2001)MathSciNetMATHCrossRef
48.
go back to reference Jeon, Y., McLean, W.: A new boundary element method for the biharmonic equation with Dirichlet boundary conditions. Adv. Comput. Math. 19(4), 339–354 (2003)MathSciNetMATHCrossRef Jeon, Y., McLean, W.: A new boundary element method for the biharmonic equation with Dirichlet boundary conditions. Adv. Comput. Math. 19(4), 339–354 (2003)MathSciNetMATHCrossRef
49.
go back to reference Jiang, S., Ren, R., Tsuji, P., Ying, L.: Second kind integral equations for the first kind Dirichlet problem of the biharmonic equation in three dimensions. J. Comput. Phys. 230(19), 7488–7501 (2011)MathSciNetMATHCrossRef Jiang, S., Ren, R., Tsuji, P., Ying, L.: Second kind integral equations for the first kind Dirichlet problem of the biharmonic equation in three dimensions. J. Comput. Phys. 230(19), 7488–7501 (2011)MathSciNetMATHCrossRef
50.
go back to reference Jiang, Y., Wang, B., Xu, Y.: A fast Fourier–Galerkin method solving a boundary integral equation for the biharmonic equation. SIAM J. Numer. Anal. 52(5), 2530–2554 (2014)MathSciNetMATHCrossRef Jiang, Y., Wang, B., Xu, Y.: A fast Fourier–Galerkin method solving a boundary integral equation for the biharmonic equation. SIAM J. Numer. Anal. 52(5), 2530–2554 (2014)MathSciNetMATHCrossRef
51.
go back to reference Karageorghis, A.: Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities. Numer. Methods Partial Differ. Equ. 8(1), 1–19 (1992)MathSciNetMATHCrossRef Karageorghis, A.: Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities. Numer. Methods Partial Differ. Equ. 8(1), 1–19 (1992)MathSciNetMATHCrossRef
52.
go back to reference Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69(2), 434–459 (1987)MathSciNetMATHCrossRef Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69(2), 434–459 (1987)MathSciNetMATHCrossRef
53.
go back to reference Karageorghis, A., Fairweather, G.: The Almansi method of fundamental solutions for solving biharmonic problems. Int. J. Numer. Methods Eng. 26(7), 1665–1682 (1988)MATHCrossRef Karageorghis, A., Fairweather, G.: The Almansi method of fundamental solutions for solving biharmonic problems. Int. J. Numer. Methods Eng. 26(7), 1665–1682 (1988)MATHCrossRef
54.
go back to reference Karageorghis, A., Fairweather, G.: The simple layer potential method of fundamental solutions for certain biharmonic problems. Int. J. Numer. Methods Fluids 9(10), 1221–1234 (1989)MathSciNetMATHCrossRef Karageorghis, A., Fairweather, G.: The simple layer potential method of fundamental solutions for certain biharmonic problems. Int. J. Numer. Methods Fluids 9(10), 1221–1234 (1989)MathSciNetMATHCrossRef
55.
go back to reference Katsikadelis, J., Massalas, C., Tzivanidis, G.: An integral equation of the plane problem of the theory of elasticity. Mech. Res. Commun. 4(3), 199–208 (1977)MATHCrossRef Katsikadelis, J., Massalas, C., Tzivanidis, G.: An integral equation of the plane problem of the theory of elasticity. Mech. Res. Commun. 4(3), 199–208 (1977)MATHCrossRef
56.
go back to reference Katsikadelis, J.T.: Boundary Elements: Theory and Applications. Elsevier, Amsterdam (2002) Katsikadelis, J.T.: Boundary Elements: Theory and Applications. Elsevier, Amsterdam (2002)
57.
go back to reference Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Math. Math. Phys. 4(6), 199–205 (1964)MATHMathSciNetCrossRef Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Math. Math. Phys. 4(6), 199–205 (1964)MATHMathSciNetCrossRef
58.
go back to reference Lai, M.C., Liu, H.C.: Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows. Appl. Math. Comput. 164(3), 679–695 (2005)MathSciNetMATH Lai, M.C., Liu, H.C.: Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows. Appl. Math. Comput. 164(3), 679–695 (2005)MathSciNetMATH
59.
go back to reference Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem (Revue francaise d’automatique, informatique, recherche opérationnelle). Analyse numérique 9(R1), 9–53 (1975)MathSciNetMATHCrossRef Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem (Revue francaise d’automatique, informatique, recherche opérationnelle). Analyse numérique 9(R1), 9–53 (1975)MathSciNetMATHCrossRef
60.
go back to reference Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998). Please confirm the paper title for the reference [59]MathSciNetMATHCrossRef Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998). Please confirm the paper title for the reference [59]MathSciNetMATHCrossRef
61.
go back to reference Li, Z.C., Lee, M.G., Chiang, J.Y., Liu, Y.P.: The Trefftz method using fundamental solutions for biharmonic equations. J. Comput. Appl. Math. 235(15), 4350–4367 (2011)MathSciNetMATHCrossRef Li, Z.C., Lee, M.G., Chiang, J.Y., Liu, Y.P.: The Trefftz method using fundamental solutions for biharmonic equations. J. Comput. Appl. Math. 235(15), 4350–4367 (2011)MathSciNetMATHCrossRef
62.
go back to reference Maiti, M., Chakrabarty, S.: Integral equation solutions for simply supported polygonal plates. Int. J. Eng. Sci. 12(10), 793–806 (1974)MATHCrossRef Maiti, M., Chakrabarty, S.: Integral equation solutions for simply supported polygonal plates. Int. J. Eng. Sci. 12(10), 793–806 (1974)MATHCrossRef
63.
go back to reference Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21(2), 285–299 (1984)MathSciNetMATHCrossRef Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21(2), 285–299 (1984)MathSciNetMATHCrossRef
64.
go back to reference Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronat. Q. 19, 149–169 (1968)CrossRef Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronat. Q. 19, 149–169 (1968)CrossRef
65.
go back to reference Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for biharmonic equations. In: Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, pp. 247–277. Springer, New York (2013) Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for biharmonic equations. In: Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, pp. 247–277. Springer, New York (2013)
66.
go back to reference Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30(3), 1003–1029 (2014)MathSciNetMATHCrossRef Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30(3), 1003–1029 (2014)MathSciNetMATHCrossRef
67.
go back to reference Poullikkas, A., Karageorghis, A., Georgiou, G.: Methods of fundamental solutions for harmonic and biharmonic boundary value problems. Comput. Mech. 21(4–5), 416–423 (1998)MathSciNetMATHCrossRef Poullikkas, A., Karageorghis, A., Georgiou, G.: Methods of fundamental solutions for harmonic and biharmonic boundary value problems. Comput. Mech. 21(4–5), 416–423 (1998)MathSciNetMATHCrossRef
68.
go back to reference Rim, K., Henry, A.S.: An Integral Equation Method in Plane Elasticity, vol. 779. National Aeronautics and Space Administration, Washington (1967) Rim, K., Henry, A.S.: An Integral Equation Method in Plane Elasticity, vol. 779. National Aeronautics and Space Administration, Washington (1967)
69.
go back to reference Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque (1976)MATH Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque (1976)MATH
70.
go back to reference Roberts, J., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2. North-Holland, Amsterdam (1991) Roberts, J., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2. North-Holland, Amsterdam (1991)
71.
go back to reference Rosser, J.B.: Nine-point difference solutions for Poisson’s equation. Comput. Math. Appl. 1(3–4), 351–360 (1975)MATHCrossRef Rosser, J.B.: Nine-point difference solutions for Poisson’s equation. Comput. Math. Appl. 1(3–4), 351–360 (1975)MATHCrossRef
72.
go back to reference Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetMATHCrossRef Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetMATHCrossRef
73.
go back to reference Sakakibara, K.: Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. Appl. Math. 62(4), 297–317 (2017)MathSciNetMATHCrossRef Sakakibara, K.: Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. Appl. Math. 62(4), 297–317 (2017)MathSciNetMATHCrossRef
74.
75.
go back to reference Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill Book Company, New York (1956)MATH Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill Book Company, New York (1956)MATH
76.
go back to reference Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, New York (2007) Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, New York (2007)
77.
78.
go back to reference Süli, E., Mozolevski, I.: hp-Version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13–16), 1851–1863 (2007)MathSciNetMATHCrossRef Süli, E., Mozolevski, I.: hp-Version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13–16), 1851–1863 (2007)MathSciNetMATHCrossRef
79.
go back to reference Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1987)MATH Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1987)MATH
80.
go back to reference Wong, Y.S., Jiang, H.: Approximate polynomial preconditioning applied to biharmonic equations. J. Supercomput. 3, 125–145 (1989) MATHCrossRef Wong, Y.S., Jiang, H.: Approximate polynomial preconditioning applied to biharmonic equations. J. Supercomput. 3, 125–145 (1989) MATHCrossRef
82.
go back to reference Ying, W.: A Cartesian grid-based boundary integral method for an elliptic interface problem on closely packed cells. Commun. Comput. Phys. 24(4), 1196–1220 (2018)MathSciNetCrossRef Ying, W.: A Cartesian grid-based boundary integral method for an elliptic interface problem on closely packed cells. Commun. Comput. Phys. 24(4), 1196–1220 (2018)MathSciNetCrossRef
83.
go back to reference Ying, W., Henriquez, C.S.: A kernel-free boundary integral method for elliptic boundary value problems. J. Comput. Phys. 227(2), 1046–1074 (2007)MathSciNetMATHCrossRef Ying, W., Henriquez, C.S.: A kernel-free boundary integral method for elliptic boundary value problems. J. Comput. Phys. 227(2), 1046–1074 (2007)MathSciNetMATHCrossRef
84.
go back to reference Ying, W., Wang, W.C.: A kernel-free boundary integral method for implicitly defined surfaces. J. Comput. Phys. 252, 606–624 (2013)MathSciNetMATHCrossRef Ying, W., Wang, W.C.: A kernel-free boundary integral method for implicitly defined surfaces. J. Comput. Phys. 252, 606–624 (2013)MathSciNetMATHCrossRef
85.
go back to reference Ying, W., Wang, W.C.: A kernel-free boundary integral method for variable coefficients elliptic PDEs. Commun. Comput. Phys. 15(4), 1108–1140 (2014)MathSciNetMATHCrossRef Ying, W., Wang, W.C.: A kernel-free boundary integral method for variable coefficients elliptic PDEs. Commun. Comput. Phys. 15(4), 1108–1140 (2014)MathSciNetMATHCrossRef
86.
go back to reference Zhang, R., Zhai, Q.: A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput. 64(2), 559–585 (2015)MathSciNetMATHCrossRef Zhang, R., Zhai, Q.: A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput. 64(2), 559–585 (2015)MathSciNetMATHCrossRef
Metadata
Title
A High-Order Kernel-Free Boundary Integral Method for the Biharmonic Equation on Irregular Domains
Authors
Yaning Xie
Wenjun Ying
Wei-Cheng Wang
Publication date
05-07-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01000-6

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner