Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

20-06-2019

A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation

Authors: Pin Lyu, Seakweng Vong

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solution of a time-fractional differential equation often exhibits a weak singularity near the initial time. It makes classical numerical methods with uniform mesh usually lose their accuracy. Technique of nonuniform mesh was found to be a very efficient approach in the literatures to recover the full accuracy based on reasonable regularity of the solution. In this paper, we study finite difference scheme with temporal nonuniform mesh for time-fractional Benjamin–Bona–Mahony equations with non-smooth solutions. Our approximation bases on an integral equation equivalent to the nonlinear problem under consideration. We employ high-order interpolation formulas to obtain a linearized scheme on a nonuniform mesh and, by using a modified Grönwall inequality established recently, we show that the proposed scheme with a temporal graded mesh is unconditionally third-order convergent in time with respect to discrete \(H^1\)-norm. Besides high order convergence the proposed scheme has the advantage that only linear systems are needed to be solved for obtaining approximated solutions. Numerical examples are provided to justify the accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A 272, 47–78 (1972)MathSciNetCrossRefMATH Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A 272, 47–78 (1972)MathSciNetCrossRefMATH
4.
go back to reference Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH
5.
go back to reference Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetCrossRefMATH
6.
go back to reference Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)MathSciNetCrossRefMATH
7.
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448–479 (2010)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448–479 (2010)MathSciNetMATH
9.
go back to reference Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)MathSciNetCrossRefMATH Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)MathSciNetCrossRefMATH
10.
go back to reference Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016)CrossRef Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016)CrossRef
11.
go back to reference Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH
12.
go back to reference Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH
13.
go back to reference Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH
14.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006)MATH
15.
go back to reference Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)MathSciNetMATH Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)MathSciNetMATH
16.
go back to reference Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefMATH Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefMATH
17.
go back to reference Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH
18.
go back to reference Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:1803.09873v2 [math.NA] Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:​1803.​09873v2 [math.NA]
19.
go back to reference Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Part. Differ. Equ. 26, 37–60 (2010)MathSciNetCrossRefMATH Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Part. Differ. Equ. 26, 37–60 (2010)MathSciNetCrossRefMATH
20.
go back to reference Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRef Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRef
21.
go back to reference Lyu, P., Vong, S.: A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein–Gordon–Schrödinger equation. Numer. Methods Part. Differ. Equ. 34, 2153–2179 (2018)CrossRefMATH Lyu, P., Vong, S.: A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein–Gordon–Schrödinger equation. Numer. Methods Part. Differ. Equ. 34, 2153–2179 (2018)CrossRefMATH
22.
go back to reference Lyu, P., Vong, S.: A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett. 78, 16–23 (2018)MathSciNetCrossRefMATH Lyu, P., Vong, S.: A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett. 78, 16–23 (2018)MathSciNetCrossRefMATH
23.
go back to reference Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein–Gordon type equations. Numer. Algorithms 78, 485–511 (2018)MathSciNetCrossRefMATH Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein–Gordon type equations. Numer. Algorithms 78, 485–511 (2018)MathSciNetCrossRefMATH
24.
go back to reference Ma, J., Tang, T.: Error analysis for a fast numerical method to a boundary integral equation of the first kind. J. Comput. Math. 26, 56–68 (2008)MathSciNetMATH Ma, J., Tang, T.: Error analysis for a fast numerical method to a boundary integral equation of the first kind. J. Comput. Math. 26, 56–68 (2008)MathSciNetMATH
26.
go back to reference McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH
27.
go back to reference Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin–Bona–Mahony equation. SIAM J. Math. Anal. 8, 792–799 (1997)MathSciNetCrossRefMATH Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin–Bona–Mahony equation. SIAM J. Math. Anal. 8, 792–799 (1997)MathSciNetCrossRefMATH
28.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
29.
go back to reference Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH
30.
go back to reference Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH
31.
go back to reference Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH
32.
go back to reference Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24, 239–248 (2007)MathSciNetCrossRefMATH Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24, 239–248 (2007)MathSciNetCrossRefMATH
33.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
34.
go back to reference Rosiera, L., Zhang, B.Y.: Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Differ. Equ. 254, 141–178 (2013)MathSciNetCrossRefMATH Rosiera, L., Zhang, B.Y.: Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Differ. Equ. 254, 141–178 (2013)MathSciNetCrossRefMATH
35.
go back to reference Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH
36.
go back to reference Song, L., Zhang, H.: Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 40, 1616–1622 (2009)MathSciNetCrossRefMATH Song, L., Zhang, H.: Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 40, 1616–1622 (2009)MathSciNetCrossRefMATH
38.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH
39.
go back to reference Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)
40.
go back to reference Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)MathSciNetCrossRefMATH Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)MathSciNetCrossRefMATH
41.
go back to reference Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)MathSciNetCrossRefMATH Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)MathSciNetCrossRefMATH
42.
go back to reference Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252–1273 (2018)MathSciNetCrossRefMATH Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252–1273 (2018)MathSciNetCrossRefMATH
43.
go back to reference Zhang, J., Xu, C.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912–4925 (2014)MathSciNetCrossRefMATH Zhang, J., Xu, C.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912–4925 (2014)MathSciNetCrossRefMATH
Metadata
Title
A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation
Authors
Pin Lyu
Seakweng Vong
Publication date
20-06-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00991-6

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner