Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

05.02.2018

Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation

verfasst von: Seakweng Vong, Pin Lyu

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study linearized finite difference scheme for a time-fractional Burgers-type equation in this paper. A linearized scheme with second-order accuracy in time and space is proposed. The advantage of the scheme is that iterative method is not required for finding the approximated solutions. Nonlinearity involving derivatives causes difficulties in analysis. By refined estimates of our previous study, we show that the scheme unconditionally converges with second-order in maximum-norm. The theoretical results are justified by numerical tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In: Advances in Applied Mechanics, pp. 171–199. Academic Press Inc., New York (1948) Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In: Advances in Applied Mechanics, pp. 171–199. Academic Press Inc., New York (1948)
2.
Zurück zum Zitat Sugimoto, N.: Generalized Burgers equation and fractional calculus. In: Nonlinear Wave Motion, Longman Scientific and Technical (1989) Sugimoto, N.: Generalized Burgers equation and fractional calculus. In: Nonlinear Wave Motion, Longman Scientific and Technical (1989)
3.
Zurück zum Zitat Jerome, S., Oldham, K.B.: The Fractional Calculus. Academic Press Inc, London (1974)MATH Jerome, S., Oldham, K.B.: The Fractional Calculus. Academic Press Inc, London (1974)MATH
4.
Zurück zum Zitat Djordjevica, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/korteweg–deVries fractional equations. J. Comput. Appl. Math. 222(2), 701–714 (2008)MathSciNetCrossRefMATH Djordjevica, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/korteweg–deVries fractional equations. J. Comput. Appl. Math. 222(2), 701–714 (2008)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Garra, R.: Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Phys. Rev. E. 84(3), 036605 (2011)CrossRef Garra, R.: Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Phys. Rev. E. 84(3), 036605 (2011)CrossRef
6.
Zurück zum Zitat Wang, Q.: Numerical solutions for fractional kdv-burgers equation by Adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)MathSciNetMATH Wang, Q.: Numerical solutions for fractional kdv-burgers equation by Adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)MathSciNetMATH
7.
Zurück zum Zitat Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equation with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)MathSciNetCrossRefMATH Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equation with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers equation. Appl. Math. Model. 36, 4557–4564 (2012)MathSciNetCrossRefMATH El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers equation. Appl. Math. Model. 36, 4557–4564 (2012)MathSciNetCrossRefMATH
9.
10.
11.
12.
Zurück zum Zitat Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-Order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)MathSciNetCrossRefMATH Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-Order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Numer. Anal. 38, A146–A170 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Numer. Anal. 38, A146–A170 (2016)MathSciNetMATH
16.
17.
Zurück zum Zitat Liao, H.L., Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75, 845–878 (2017)MathSciNetCrossRefMATH Liao, H.L., Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75, 845–878 (2017)MathSciNetCrossRefMATH
18.
19.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)MathSciNetCrossRefMATH Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary bonditions. J. Sci. Comput. 66, 725–739 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary bonditions. J. Sci. Comput. 66, 725–739 (2016)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)MathSciNetCrossRefMATH Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)MathSciNetCrossRefMATH Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetCrossRefMATH Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Zhao, Z., Jin, X.Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRefMATH Zhao, Z., Jin, X.Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part. Differ. Equ. 31, 706–722 (2015)MathSciNetCrossRefMATH Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part. Differ. Equ. 31, 706–722 (2015)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)MathSciNetCrossRef Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Hao, Z.P., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods Part. Differ. Equ. 33(1), 105–124 (2017)MathSciNetCrossRefMATH Hao, Z.P., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods Part. Differ. Equ. 33(1), 105–124 (2017)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)CrossRefMATH Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)CrossRefMATH
33.
Zurück zum Zitat Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)MathSciNetCrossRefMATH Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)MathSciNetCrossRef Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)MathSciNetCrossRef
35.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)MathSciNetCrossRef Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)MathSciNetCrossRef
37.
Zurück zum Zitat Liao, H.L., Zhao, Y., Teng, X.H.: Convergence of a weighted compact ADI scheme for fractional diffusion-wave equations, submitted Liao, H.L., Zhao, Y., Teng, X.H.: Convergence of a weighted compact ADI scheme for fractional diffusion-wave equations, submitted
38.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical Approximation of Partial Diferential Equations. Springer, Berlin (1997) Quarteroni, A., Valli, A.: Numerical Approximation of Partial Diferential Equations. Springer, Berlin (1997)
39.
Zurück zum Zitat Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)
Metadaten
Titel
Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation
verfasst von
Seakweng Vong
Pin Lyu
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0659-0

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe

Premium Partner