Skip to main content
Erschienen in: Journal of Scientific Computing 2/2016

10.05.2015

A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions

verfasst von: Seakweng Vong, Pin Lyu, Zhibo Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a compact finite difference scheme with global convergence order \(O\big (\tau ^{2-\alpha }+h^4\big )\) is derived for fractional sub-diffusion equations with the spatially variable coefficient subject to Neumann boundary conditions. The difficulty caused by the variable coefficient and the Neumann boundary conditions is overcome by subtle decomposition of the coefficient matrices. The stability and convergence of the proposed scheme are studied using its matrix form by the energy method. The theoretical results are supported by numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3979 (1993)CrossRef Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3979 (1993)CrossRef
2.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMathSciNetMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMathSciNetMATH
3.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
4.
Zurück zum Zitat Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science and Technology, Amsterdam (2006)MATH Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science and Technology, Amsterdam (2006)MATH
5.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)CrossRefMathSciNetMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)CrossRefMathSciNetMATH
6.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)CrossRefMathSciNetMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)CrossRefMathSciNetMATH
7.
Zurück zum Zitat Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)CrossRefMathSciNetMATH Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)CrossRefMathSciNetMATH
8.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)CrossRefMathSciNetMATH Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)CrossRefMathSciNetMATH
9.
10.
Zurück zum Zitat Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)CrossRefMathSciNetMATH Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)CrossRefMathSciNetMATH
11.
Zurück zum Zitat Zhao, X., Sun, Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)CrossRefMathSciNetMATH Zhao, X., Sun, Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)CrossRefMathSciNetMATH
12.
Zurück zum Zitat Ren, J., Sun, Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)CrossRefMathSciNetMATH Ren, J., Sun, Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)CrossRefMathSciNetMATH
13.
Zurück zum Zitat Mustapha, K.: An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA. J. Numer. Anal. 31, 719–739 (2011)CrossRefMathSciNetMATH Mustapha, K.: An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA. J. Numer. Anal. 31, 719–739 (2011)CrossRefMathSciNetMATH
14.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithm. 63, 431–452 (2013)CrossRefMathSciNetMATH Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithm. 63, 431–452 (2013)CrossRefMathSciNetMATH
15.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)CrossRefMathSciNetMATH Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)CrossRefMathSciNetMATH
16.
Zurück zum Zitat Abbaszadeh, M., Mohebbi, A.: A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term. Comput. Math. Appl. 66, 1345–1359 (2013)CrossRefMathSciNet Abbaszadeh, M., Mohebbi, A.: A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term. Comput. Math. Appl. 66, 1345–1359 (2013)CrossRefMathSciNet
17.
Zurück zum Zitat Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)CrossRefMathSciNet Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)CrossRefMathSciNet
18.
Zurück zum Zitat Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)CrossRefMathSciNet Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)CrossRefMathSciNet
19.
Zurück zum Zitat Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)CrossRefMATH Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)CrossRefMATH
20.
Zurück zum Zitat Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)CrossRefMathSciNetMATH Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)CrossRefMathSciNetMATH
21.
Zurück zum Zitat Sun, Z.: An unconditionally stable and \(O(\tau ^2+h^4)\) order \(L_\infty \) convergence difference scheme for linear parabolic equation with variable coefficients. Numer. Methods Part Differ. Equ. 17, 619–631 (2001)CrossRefMATH Sun, Z.: An unconditionally stable and \(O(\tau ^2+h^4)\) order \(L_\infty \) convergence difference scheme for linear parabolic equation with variable coefficients. Numer. Methods Part Differ. Equ. 17, 619–631 (2001)CrossRefMATH
22.
Zurück zum Zitat Britt, S., Tsynkov, S., Turkel, E.: A compact fourth order scheme for the Helmholtz equation in polar coordinates. J. Sci. Comput. 45, 26–47 (2010)CrossRefMathSciNetMATH Britt, S., Tsynkov, S., Turkel, E.: A compact fourth order scheme for the Helmholtz equation in polar coordinates. J. Sci. Comput. 45, 26–47 (2010)CrossRefMathSciNetMATH
23.
Zurück zum Zitat Medvinsky, M., Tsynkov, S., Turkel, E.: The method of difference potentials for the Helmholtz equation using compact high order schemes. J. Sci. Comput. 53, 150–193 (2012)CrossRefMathSciNetMATH Medvinsky, M., Tsynkov, S., Turkel, E.: The method of difference potentials for the Helmholtz equation using compact high order schemes. J. Sci. Comput. 53, 150–193 (2012)CrossRefMathSciNetMATH
24.
Zurück zum Zitat Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)CrossRefMathSciNet Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)CrossRefMathSciNet
25.
Zurück zum Zitat Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokkee–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)CrossRefMathSciNet Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokkee–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)CrossRefMathSciNet
26.
Zurück zum Zitat Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)CrossRefMathSciNet Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)CrossRefMathSciNet
27.
Zurück zum Zitat Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part Differ. Equ. (2014). doi:10.1002/num.21912 Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part Differ. Equ. (2014). doi:10.​1002/​num.​21912
28.
Zurück zum Zitat Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)CrossRefMathSciNet Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)CrossRefMathSciNet
29.
Zurück zum Zitat Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)CrossRefMathSciNet Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)CrossRefMathSciNet
30.
Zurück zum Zitat Vong, S., Wang, Z.: High order difference schemes for a time fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetMATH Vong, S., Wang, Z.: High order difference schemes for a time fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetMATH
31.
Zurück zum Zitat Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)CrossRefMathSciNet Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)CrossRefMathSciNet
33.
Zurück zum Zitat Sun, Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). (in Chinese) Sun, Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). (in Chinese)
Metadaten
Titel
A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions
verfasst von
Seakweng Vong
Pin Lyu
Zhibo Wang
Publikationsdatum
10.05.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0040-5

Weitere Artikel der Ausgabe 2/2016

Journal of Scientific Computing 2/2016 Zur Ausgabe

Premium Partner