Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

23.01.2018

Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction–Subdiffusion Equations

verfasst von: Dongfang Li, Jiwei Zhang, Zhimin Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is concerned with unconditionally optimal error estimates of linearized Galerkin finite element methods to numerically solve some multi-dimensional fractional reaction–subdiffusion equations, while the classical analysis for numerical approximation of multi-dimensional nonlinear parabolic problems usually require a restriction on the time-step, which is dependent on the spatial grid size. To obtain the unconditionally optimal error estimates, the key point is to obtain the boundedness of numerical solutions in the \(L^\infty \)-norm. For this, we introduce a time-discrete elliptic equation, construct an energy function for the nonlocal problem, and handle the error summation properly. Compared with integer-order nonlinear problems, the nonlocal convolution in the time fractional derivative causes much difficulties in developing and analyzing numerical schemes. Numerical examples are given to validate our theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)MathSciNetCrossRefMATH Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Amblard, F., Maggs, A.C., Yurke, B., Pargellis, A.N., Leibler, S.: Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77, 4470 (1996)CrossRef Amblard, F., Maggs, A.C., Yurke, B., Pargellis, A.N., Leibler, S.: Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77, 4470 (1996)CrossRef
3.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)MathSciNetCrossRefMATH Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms: models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms: models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef
5.
Zurück zum Zitat Cannon, J.R., Lin, Y.: Nonclassical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations. SIAM. J. Numer. Anal. 25, 187–201 (1988)MATH Cannon, J.R., Lin, Y.: Nonclassical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations. SIAM. J. Numer. Anal. 25, 187–201 (1988)MATH
6.
Zurück zum Zitat Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRefMATH Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Ford, N.J., Rodrigues, M.M., Vieira, N.: A numerical method for the fractional Schrödinger type equation of spatial dimension two. Frac. Cacl. Appl. Anal. 16, 1–15 (2013)CrossRefMATH Ford, N.J., Rodrigues, M.M., Vieira, N.: A numerical method for the fractional Schrödinger type equation of spatial dimension two. Frac. Cacl. Appl. Anal. 16, 1–15 (2013)CrossRefMATH
8.
9.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Gu, Y., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 56(3), 303–334 (2010)MathSciNetMATH Gu, Y., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 56(3), 303–334 (2010)MathSciNetMATH
11.
Zurück zum Zitat Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)CrossRef Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)CrossRef
12.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM. J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM. J. Numer. Anal. 27, 353–384 (1990)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM. J. Numer. Anal. 51, 445–466 (2013)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM. J. Numer. Anal. 51, 445–466 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tridiagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)MathSciNetCrossRefMATH Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tridiagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. Ph.D. Thesis, City University of Hong Kong, Hong Kong, July, 2012 Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. Ph.D. Thesis, City University of Hong Kong, Hong Kong, July, 2012
20.
Zurück zum Zitat Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Li, B., Gao, H., Sun, W.: Uncondtional optimal error estimates of a Crank–Nicolson Galerkin method the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH Li, B., Gao, H., Sun, W.: Uncondtional optimal error estimates of a Crank–Nicolson Galerkin method the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Comput. Sci 72, 892–915 (2017)MathSciNetCrossRefMATH Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Comput. Sci 72, 892–915 (2017)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH
24.
Zurück zum Zitat Li, D., Zhang, J.: Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. J. Comput. Phys. 322, 415–428 (2016)MathSciNetCrossRefMATH Li, D., Zhang, J.: Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. J. Comput. Phys. 322, 415–428 (2016)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)MathSciNetCrossRef Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRefMATH Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)MathSciNetCrossRef Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)MathSciNetCrossRef
28.
Zurück zum Zitat López-Marcos, J.C., Sanz-serna, J.M.: A definition of stability for nonlinear problems. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations, Teubner-Texte zur Mathematik, Band 104, Leipzig, pp. 216–226 (1988) López-Marcos, J.C., Sanz-serna, J.M.: A definition of stability for nonlinear problems. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations, Teubner-Texte zur Mathematik, Band 104, Leipzig, pp. 216–226 (1988)
29.
Zurück zum Zitat Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16, 284–299 (1979)MathSciNetCrossRefMATH Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16, 284–299 (1979)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Mustapha, K.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH Mustapha, K.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Mustapha, K.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)MathSciNetCrossRefMATH Mustapha, K.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
33.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, New York (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, New York (1993)MATH
34.
Zurück zum Zitat Seki, K., Wojcik, M., Tachiya, M.: Fractional reaction–diffusion equation. J. Chem. Phys. 119, 2165–2174 (2003)CrossRef Seki, K., Wojcik, M., Tachiya, M.: Fractional reaction–diffusion equation. J. Chem. Phys. 119, 2165–2174 (2003)CrossRef
35.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH
36.
Zurück zum Zitat Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)MathSciNetCrossRefMATH Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 52, 390–407 (2014)CrossRefMATH Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 52, 390–407 (2014)CrossRefMATH
38.
Zurück zum Zitat Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)MathSciNetCrossRef Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)MathSciNetCrossRef
39.
Zurück zum Zitat Yu, B., Jiang, X.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)MathSciNetCrossRefMATH Yu, B., Jiang, X.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Yuste, S.B., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef Yuste, S.B., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef
41.
Zurück zum Zitat Yuste, S.B., Lindenberg, K.: Subdiffusion-limited reactions. Chem. Phys. 284, 169–180 (2002)CrossRef Yuste, S.B., Lindenberg, K.: Subdiffusion-limited reactions. Chem. Phys. 284, 169–180 (2002)CrossRef
42.
Zurück zum Zitat Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schödinger equation. SIAM. J. Sci. Comput. 36(6), 2865–2886 (2014)MathSciNetCrossRef Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schödinger equation. SIAM. J. Sci. Comput. 36(6), 2865–2886 (2014)MathSciNetCrossRef
43.
Zurück zum Zitat Zhang, X., He, Y., Wei, L., Tang, B., Wang, S.: A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher’s equation. Int. J. Comput. Math. 91, 2021–2038 (2014)MathSciNetCrossRefMATH Zhang, X., He, Y., Wei, L., Tang, B., Wang, S.: A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher’s equation. Int. J. Comput. Math. 91, 2021–2038 (2014)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)MathSciNetCrossRefMATH Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical methods for nonlinear fractional reaction–subdiffusion process. IMA J. Appl. Math. 6, 1–23 (2009)MATH Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical methods for nonlinear fractional reaction–subdiffusion process. IMA J. Appl. Math. 6, 1–23 (2009)MATH
46.
Zurück zum Zitat Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equaiton. Numer. Algorithm 72, 447–466 (2016)CrossRefMATH Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equaiton. Numer. Algorithm 72, 447–466 (2016)CrossRefMATH
Metadaten
Titel
Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction–Subdiffusion Equations
verfasst von
Dongfang Li
Jiwei Zhang
Zhimin Zhang
Publikationsdatum
23.01.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0642-9

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe