Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

01.03.2018

Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For multivariate nonlinear Hamiltonian equations, we propose a meshless conservative method by using radial basis approximation. Based on the method of lines, we first discretize the Hamiltonian functional using radial basis function interpolation, and then obtain a finite-dimensional semi-discrete Hamiltonian system. Moreover, we define a discrete symplectic form and verify that it is an approximation to the continuous one and is conserved with respect to time. For time discretization, two conservative methods (symplectic method and energy-conserving method) are employed to derive the full-discretized system. Approximation errors together with conservation properties including symplecticity and energy are discussed in detail. Finally, we present several numerical examples to illustrate that our method is accurate and effective when processing nonlinear Hamiltonian equations with scattered nodes. Besides, the numerical results also confirm the excellent conservation properties of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abia, L., Sanz-Serna, J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)MathSciNetCrossRefMATH Abia, L., Sanz-Serna, J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160(1), 88–116 (2000)MathSciNetCrossRefMATH Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160(1), 88–116 (2000)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bratsos, A.G.: A fourth order numerical scheme for the one dimensional Sine-Gordon equation. Int. J. Comput. Math. 85, 1083–1095 (2008)MathSciNetCrossRefMATH Bratsos, A.G.: A fourth order numerical scheme for the one dimensional Sine-Gordon equation. Int. J. Comput. Math. 85, 1083–1095 (2008)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)MathSciNet Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)MathSciNet
7.
Zurück zum Zitat Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197–223 (2006)MathSciNetCrossRefMATH Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197–223 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comput. 83(288), 1689–1700 (2014)MathSciNetCrossRefMATH Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comput. 83(288), 1689–1700 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field”method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field”method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Chen, J.B.: Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein–Gordon equation. Lett. Math. Phys. 75, 293–305 (2006)MathSciNetCrossRefMATH Chen, J.B.: Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein–Gordon equation. Lett. Math. Phys. 75, 293–305 (2006)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)MathSciNetCrossRefMATH Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)MathSciNetCrossRefMATH Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)CrossRefMATH Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)CrossRefMATH
14.
Zurück zum Zitat Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer, Berlin (2010)CrossRefMATH Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer, Berlin (2010)CrossRefMATH
15.
Zurück zum Zitat Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75, 421–445 (1997)MathSciNetCrossRefMATH Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75, 421–445 (1997)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=\left(\frac{\partial u}{\partial x}\right)^{\alpha } \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)MathSciNetCrossRefMATH Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=\left(\frac{\partial u}{\partial x}\right)^{\alpha } \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002) Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)
18.
Zurück zum Zitat Kitson, A., McLachlan, R.I., Robidoux, N.: Skew-adjoint finite difference methods on nonuniform grids. N. Z. J. Math. 32, 139–159 (2003)MathSciNetMATH Kitson, A., McLachlan, R.I., Robidoux, N.: Skew-adjoint finite difference methods on nonuniform grids. N. Z. J. Math. 32, 139–159 (2003)MathSciNetMATH
20.
Zurück zum Zitat Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Liu, H.L., Yi, N.Y.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)MathSciNetCrossRefMATH Liu, H.L., Yi, N.Y.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)MathSciNetCrossRefMATH Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)MathSciNetCrossRefMATH
24.
Zurück zum Zitat McLachlan, R.I., Robidoux, N.: Antisymmetry, pseudospectral methods, and conservative PDEs. In: International Conference on Differential Equations, vols. 1–2. World Sci. Publ., River Edge, NJ, pp. 994–999 (1999) McLachlan, R.I., Robidoux, N.: Antisymmetry, pseudospectral methods, and conservative PDEs. In: International Conference on Differential Equations, vols. 1–2. World Sci. Publ., River Edge, NJ, pp. 994–999 (1999)
25.
Zurück zum Zitat McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditional positive definite functions. Construt. Approx. 2, 11–22 (1986)CrossRefMATH Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditional positive definite functions. Construt. Approx. 2, 11–22 (1986)CrossRefMATH
27.
Zurück zum Zitat Mohammadreza, A.D.: Direct meshless local Petrov–Galerkin method for the two-dimensional Klein–Gordon equation. Eng. Anal. Bound. Elem. 74, 1–13 (2017)MathSciNetCrossRef Mohammadreza, A.D.: Direct meshless local Petrov–Galerkin method for the two-dimensional Klein–Gordon equation. Eng. Anal. Bound. Elem. 74, 1–13 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493–535 (2004)MathSciNetCrossRefMATH Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493–535 (2004)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Pekmen, B., Tezer-Sezgin, M.: Differential quadrature solution of nonlinear Klein–Gordon and Sine-Gordon equations. Comput. Phys. Commun. 183, 1702–1713 (2012)MathSciNetCrossRefMATH Pekmen, B., Tezer-Sezgin, M.: Differential quadrature solution of nonlinear Klein–Gordon and Sine-Gordon equations. Comput. Phys. Commun. 183, 1702–1713 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Powell, M.J.D.: Radial Basis Functions for Multivariate Interpolation: A Review, in Numerical Analysis, pp. 223–241. Longman Scientific & Technical, New York (1987) Powell, M.J.D.: Radial Basis Functions for Multivariate Interpolation: A Review, in Numerical Analysis, pp. 223–241. Longman Scientific & Technical, New York (1987)
31.
32.
Zurück zum Zitat Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, No. 7. Chapman & Hall, London (1994)MATH Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, No. 7. Chapman & Hall, London (1994)MATH
33.
Zurück zum Zitat Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)MathSciNetCrossRefMATH Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Schaback, R., Wu, Z.M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory 91, 320–331 (1997)MathSciNetCrossRefMATH Schaback, R., Wu, Z.M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory 91, 320–331 (1997)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Strauss, W.A.: Nonlinear wave equations. AMS Regional Conference Series, no. 73 (1989) Strauss, W.A.: Nonlinear wave equations. AMS Regional Conference Series, no. 73 (1989)
36.
Zurück zum Zitat Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)CrossRef Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)CrossRef
37.
Zurück zum Zitat Wu, Z.M.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8(2), 1–10 (1992)MathSciNetMATH Wu, Z.M.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8(2), 1–10 (1992)MathSciNetMATH
38.
Zurück zum Zitat Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)MathSciNetCrossRefMATH Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)MathSciNetCrossRefMATH Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Wu, Z.M., Zhang, S.L.: Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Eng. Anal. Bound. Elem. 37, 1052–1058 (2013)MathSciNetCrossRefMATH Wu, Z.M., Zhang, S.L.: Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Eng. Anal. Bound. Elem. 37, 1052–1058 (2013)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Wu, Z.M., Zhang, S.L.: A meshless symplectic algorithm for multi-variate Hamiltonian PDEs with radial basis approximation. Eng. Anal. Bound. Elem. 50, 258–264 (2015)MathSciNetCrossRef Wu, Z.M., Zhang, S.L.: A meshless symplectic algorithm for multi-variate Hamiltonian PDEs with radial basis approximation. Eng. Anal. Bound. Elem. 50, 258–264 (2015)MathSciNetCrossRef
42.
Zurück zum Zitat Zhen, L., Bai, Y., Li, Q., Wu, K.: Symplectic and multisymplectic schemes with the simple finite element method. Phys. Lett. A 314, 443–455 (2003)MathSciNetCrossRefMATH Zhen, L., Bai, Y., Li, Q., Wu, K.: Symplectic and multisymplectic schemes with the simple finite element method. Phys. Lett. A 314, 443–455 (2003)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 113(3), 134–139 (1988)MathSciNetCrossRefMATH Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 113(3), 134–139 (1988)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Zhu, H.J., Tang, L.Y., Song, S.H., Tang, Y.F., Wang, D.S.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229(7), 2550–2572 (2010)MathSciNetCrossRefMATH Zhu, H.J., Tang, L.Y., Song, S.H., Tang, Y.F., Wang, D.S.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229(7), 2550–2572 (2010)MathSciNetCrossRefMATH
Metadaten
Titel
Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs
Publikationsdatum
01.03.2018
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0658-1

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe