Skip to main content
Erschienen in: Journal of Scientific Computing 3/2019

20.06.2019

A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation

verfasst von: Pin Lyu, Seakweng Vong

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The solution of a time-fractional differential equation often exhibits a weak singularity near the initial time. It makes classical numerical methods with uniform mesh usually lose their accuracy. Technique of nonuniform mesh was found to be a very efficient approach in the literatures to recover the full accuracy based on reasonable regularity of the solution. In this paper, we study finite difference scheme with temporal nonuniform mesh for time-fractional Benjamin–Bona–Mahony equations with non-smooth solutions. Our approximation bases on an integral equation equivalent to the nonlinear problem under consideration. We employ high-order interpolation formulas to obtain a linearized scheme on a nonuniform mesh and, by using a modified Grönwall inequality established recently, we show that the proposed scheme with a temporal graded mesh is unconditionally third-order convergent in time with respect to discrete \(H^1\)-norm. Besides high order convergence the proposed scheme has the advantage that only linear systems are needed to be solved for obtaining approximated solutions. Numerical examples are provided to justify the accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A 272, 47–78 (1972)MathSciNetCrossRefMATH Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A 272, 47–78 (1972)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448–479 (2010)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448–479 (2010)MathSciNetMATH
9.
Zurück zum Zitat Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)MathSciNetCrossRefMATH Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016)CrossRef Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016)CrossRef
11.
Zurück zum Zitat Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH
13.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006)MATH
15.
Zurück zum Zitat Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)MathSciNetMATH Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)MathSciNetMATH
16.
Zurück zum Zitat Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefMATH Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:1803.09873v2 [math.NA] Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:​1803.​09873v2 [math.NA]
19.
Zurück zum Zitat Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Part. Differ. Equ. 26, 37–60 (2010)MathSciNetCrossRefMATH Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Part. Differ. Equ. 26, 37–60 (2010)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRef Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Lyu, P., Vong, S.: A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein–Gordon–Schrödinger equation. Numer. Methods Part. Differ. Equ. 34, 2153–2179 (2018)CrossRefMATH Lyu, P., Vong, S.: A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein–Gordon–Schrödinger equation. Numer. Methods Part. Differ. Equ. 34, 2153–2179 (2018)CrossRefMATH
22.
Zurück zum Zitat Lyu, P., Vong, S.: A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett. 78, 16–23 (2018)MathSciNetCrossRefMATH Lyu, P., Vong, S.: A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett. 78, 16–23 (2018)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein–Gordon type equations. Numer. Algorithms 78, 485–511 (2018)MathSciNetCrossRefMATH Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein–Gordon type equations. Numer. Algorithms 78, 485–511 (2018)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Ma, J., Tang, T.: Error analysis for a fast numerical method to a boundary integral equation of the first kind. J. Comput. Math. 26, 56–68 (2008)MathSciNetMATH Ma, J., Tang, T.: Error analysis for a fast numerical method to a boundary integral equation of the first kind. J. Comput. Math. 26, 56–68 (2008)MathSciNetMATH
26.
Zurück zum Zitat McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin–Bona–Mahony equation. SIAM J. Math. Anal. 8, 792–799 (1997)MathSciNetCrossRefMATH Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin–Bona–Mahony equation. SIAM J. Math. Anal. 8, 792–799 (1997)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24, 239–248 (2007)MathSciNetCrossRefMATH Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24, 239–248 (2007)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
34.
Zurück zum Zitat Rosiera, L., Zhang, B.Y.: Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Differ. Equ. 254, 141–178 (2013)MathSciNetCrossRefMATH Rosiera, L., Zhang, B.Y.: Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Differ. Equ. 254, 141–178 (2013)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Song, L., Zhang, H.: Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 40, 1616–1622 (2009)MathSciNetCrossRefMATH Song, L., Zhang, H.: Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 40, 1616–1622 (2009)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)
40.
Zurück zum Zitat Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)MathSciNetCrossRefMATH Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)MathSciNetCrossRefMATH Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252–1273 (2018)MathSciNetCrossRefMATH Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252–1273 (2018)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhang, J., Xu, C.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912–4925 (2014)MathSciNetCrossRefMATH Zhang, J., Xu, C.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912–4925 (2014)MathSciNetCrossRefMATH
Metadaten
Titel
A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin–Bona–Mahony Equation
verfasst von
Pin Lyu
Seakweng Vong
Publikationsdatum
20.06.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00991-6

Weitere Artikel der Ausgabe 3/2019

Journal of Scientific Computing 3/2019 Zur Ausgabe

Premium Partner