Skip to main content
Top
Published in: BIT Numerical Mathematics 3/2019

13-03-2019

A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions

Authors: J. Ridder, A. M. Ruf

Published in: BIT Numerical Mathematics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We prove convergence of a finite difference scheme to the unique entropy solution of a general form of the Ostrovsky–Hunter equation on a bounded domain with non-homogeneous Dirichlet boundary conditions. Our scheme is an extension of monotone schemes for conservation laws to the equation at hand. The convergence result at the center of this article also proves existence of entropy solutions for the initial-boundary value problem for the general Ostrovsky–Hunter equation. Additionally, we show uniqueness using Kružkov’s doubling of variables technique. We also include numerical examples to confirm the convergence results and determine rates of convergence experimentally.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here, we have https://static-content.springer.com/image/art%3A10.1007%2Fs10543-019-00746-7/MediaObjects/10543_2019_746_IEq234_HTML.gif and therefore \(\lambda =\Delta t/\Delta x\) should satisfy \(\lambda \le 36\). However, since the https://static-content.springer.com/image/art%3A10.1007%2Fs10543-019-00746-7/MediaObjects/10543_2019_746_IEq237_HTML.gif bound from Lemma 1 allows for some growth of https://static-content.springer.com/image/art%3A10.1007%2Fs10543-019-00746-7/MediaObjects/10543_2019_746_IEq238_HTML.gif choosing a smaller \(\lambda \) can be neccessary.
 
Literature
1.
go back to reference Amiranashvili, S., Vladimirov, A.G., Bandelow, U.: A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 58(2), 219–226 (2010)CrossRef Amiranashvili, S., Vladimirov, A.G., Bandelow, U.: A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 58(2), 219–226 (2010)CrossRef
2.
go back to reference Bardos, C., Leroux, A.Y., Nedelec, J.C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)MathSciNetCrossRefMATH Bardos, C., Leroux, A.Y., Nedelec, J.C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)MathSciNetCrossRefMATH
3.
go back to reference Boyd, J.P.: Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves). Eur. J. Appl. Math. 16(1), 65–81 (2005)MathSciNetCrossRefMATH Boyd, J.P.: Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves). Eur. J. Appl. Math. 16(1), 65–81 (2005)MathSciNetCrossRefMATH
4.
go back to reference Brunelli, J.C., Sakovich, S.: Hamiltonian structures for the Ostrovsky–Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(1), 56–62 (2013)MathSciNetCrossRefMATH Brunelli, J.C., Sakovich, S.: Hamiltonian structures for the Ostrovsky–Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(1), 56–62 (2013)MathSciNetCrossRefMATH
5.
go back to reference Coclite, G., Karlsen, K., Kwon, Y.S.: Initial-boundary value problems for conservation laws with source terms and the Degasperis–Procesi equation. J. Funct. Anal. 257(12), 3823–3857 (2009)MathSciNetCrossRefMATH Coclite, G., Karlsen, K., Kwon, Y.S.: Initial-boundary value problems for conservation laws with source terms and the Degasperis–Procesi equation. J. Funct. Anal. 257(12), 3823–3857 (2009)MathSciNetCrossRefMATH
6.
go back to reference Coclite, G., Ridder, J., Risebro, N.: A convergent finite difference scheme for the Ostrovsky–Hunter equation on a bounded domain. BIT Numer. Math. 57(1), 93–122 (2017)MathSciNetCrossRefMATH Coclite, G., Ridder, J., Risebro, N.: A convergent finite difference scheme for the Ostrovsky–Hunter equation on a bounded domain. BIT Numer. Math. 57(1), 93–122 (2017)MathSciNetCrossRefMATH
7.
go back to reference Coclite, G., di Ruvo, L., Karlsen, K.: Some wellposedness results for the Ostrovsky–Hunter equation. In: Hyperbolic Conservation Laws and Related Analysis with Applications, pp. 143–159. Springer (2014) Coclite, G., di Ruvo, L., Karlsen, K.: Some wellposedness results for the Ostrovsky–Hunter equation. In: Hyperbolic Conservation Laws and Related Analysis with Applications, pp. 143–159. Springer (2014)
8.
go back to reference Coclite, G.M., di Ruvo, L.: Oleinik type estimates for the Ostrovsky–Hunter equation. J. Math. Anal. Appl. 423(1), 162–190 (2015)MathSciNetCrossRefMATH Coclite, G.M., di Ruvo, L.: Oleinik type estimates for the Ostrovsky–Hunter equation. J. Math. Anal. Appl. 423(1), 162–190 (2015)MathSciNetCrossRefMATH
9.
go back to reference Coclite, G.M., di Ruvo, L.: Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky–Hunter equation. J. Hyperbolic Differ. Equ. 12(02), 221–248 (2015)MathSciNetCrossRefMATH Coclite, G.M., di Ruvo, L.: Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky–Hunter equation. J. Hyperbolic Differ. Equ. 12(02), 221–248 (2015)MathSciNetCrossRefMATH
10.
11.
go back to reference Coclite, G.M., di Ruvo, L.: Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll. Unione Mat. Italiana 8(1), 31–44 (2015)MathSciNetCrossRefMATH Coclite, G.M., di Ruvo, L.: Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll. Unione Mat. Italiana 8(1), 31–44 (2015)MathSciNetCrossRefMATH
12.
go back to reference Coclite, G.M., di Ruvo, L.: Well-posedness of the Ostrovsky–Hunter equation under the combined effects of dissipation and short-wave dispersion. J. Evol. Equ. 16(2), 365–389 (2016)MathSciNetCrossRefMATH Coclite, G.M., di Ruvo, L.: Well-posedness of the Ostrovsky–Hunter equation under the combined effects of dissipation and short-wave dispersion. J. Evol. Equ. 16(2), 365–389 (2016)MathSciNetCrossRefMATH
13.
go back to reference Coclite, G.M., di Ruvo, L., Karlsen, K.H.: The initial-boundary-value problem for an Ostrovsky–Hunter type equation. In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis pp. 97–109 (2018) Coclite, G.M., di Ruvo, L., Karlsen, K.H.: The initial-boundary-value problem for an Ostrovsky–Hunter type equation. In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis pp. 97–109 (2018)
14.
go back to reference Dubois, F., Le Floch, P.: Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws, pp. 96–104. Vieweg+Teubner Verlag, Wiesbaden (1989)MATH Dubois, F., Le Floch, P.: Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws, pp. 96–104. Vieweg+Teubner Verlag, Wiesbaden (1989)MATH
15.
go back to reference Grimshaw, R.H., Helfrich, K., Johnson, E.R.: The reduced Ostrovsky equation: integrability and breaking. Stud. Appl. Math. 129(4), 414–436 (2012)MathSciNetCrossRefMATH Grimshaw, R.H., Helfrich, K., Johnson, E.R.: The reduced Ostrovsky equation: integrability and breaking. Stud. Appl. Math. 129(4), 414–436 (2012)MathSciNetCrossRefMATH
17.
go back to reference Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws, vol. 152. Springer, New York (2015)CrossRefMATH Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws, vol. 152. Springer, New York (2015)CrossRefMATH
18.
go back to reference Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)MathSciNet Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)MathSciNet
19.
go back to reference Karlsen, K., Risebro, N., Storrøsten, E.: \(L^1\) error estimates for difference approximations of degenerate convection–diffusion equations. Math. Comput. 83(290), 2717–2762 (2014)CrossRefMATH Karlsen, K., Risebro, N., Storrøsten, E.: \(L^1\) error estimates for difference approximations of degenerate convection–diffusion equations. Math. Comput. 83(290), 2717–2762 (2014)CrossRefMATH
20.
go back to reference Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10(2), 217 (1970)CrossRef Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10(2), 217 (1970)CrossRef
21.
go back to reference Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)CrossRef Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)CrossRef
22.
go back to reference Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the short-pulse equation. Dyn. PDE 6(4), 291–310 (2009)MathSciNetMATH Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the short-pulse equation. Dyn. PDE 6(4), 291–310 (2009)MathSciNetMATH
23.
go back to reference Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)MathSciNetCrossRefMATH Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)MathSciNetCrossRefMATH
24.
go back to reference de Monvel, A.B., Shepelsky, D.: The Ostrovsky–Vakhnenko equation: a Riemann–Hilbert approach. C. R. Math. 352(3), 189–195 (2014)MathSciNetCrossRefMATH de Monvel, A.B., Shepelsky, D.: The Ostrovsky–Vakhnenko equation: a Riemann–Hilbert approach. C. R. Math. 352(3), 189–195 (2014)MathSciNetCrossRefMATH
25.
26.
go back to reference Ohlberger, M., Vovelle, J.: Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method. Math. Comput. 75(253), 113–150 (2006)MathSciNetCrossRefMATH Ohlberger, M., Vovelle, J.: Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method. Math. Comput. 75(253), 113–150 (2006)MathSciNetCrossRefMATH
27.
go back to reference Ostrovsky, L.: Nonlinear internal waves in a rotating ocean. Oceanology 18(2), 119–125 (1978) Ostrovsky, L.: Nonlinear internal waves in a rotating ocean. Oceanology 18(2), 119–125 (1978)
30.
go back to reference di Ruvo, L.: Discontinuous solutions for the Ostrovsky–Hunter equation and two-phase flows. Ph.D. thesis, University of Bari (2013) di Ruvo, L.: Discontinuous solutions for the Ostrovsky–Hunter equation and two-phase flows. Ph.D. thesis, University of Bari (2013)
31.
go back to reference Strub, S.I., Bayen, M.A.: Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlinear Control 16(16), 733–748 (2006)MathSciNetCrossRefMATH Strub, S.I., Bayen, M.A.: Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlinear Control 16(16), 733–748 (2006)MathSciNetCrossRefMATH
32.
go back to reference Schäfer, T., Wayne, C.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D Nonlinear Phenom. 196(1), 90–105 (2004)MathSciNetCrossRefMATH Schäfer, T., Wayne, C.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D Nonlinear Phenom. 196(1), 90–105 (2004)MathSciNetCrossRefMATH
33.
go back to reference Stepanyants, Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)MathSciNetCrossRefMATH Stepanyants, Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)MathSciNetCrossRefMATH
36.
go back to reference Vakhnenko, V., Parkes, E.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)MathSciNetCrossRefMATH Vakhnenko, V., Parkes, E.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)MathSciNetCrossRefMATH
Metadata
Title
A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions
Authors
J. Ridder
A. M. Ruf
Publication date
13-03-2019
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 3/2019
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00746-7

Other articles of this Issue 3/2019

BIT Numerical Mathematics 3/2019 Go to the issue

Premium Partner