Skip to main content
Top
Published in: Neural Computing and Applications 20/2020

23-11-2018 | Recent Advances in Deep Learning for Medical Image Processing

A deep convolutional neural network model for automated identification of abnormal EEG signals

Published in: Neural Computing and Applications | Issue 20/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electroencephalogram (EEG) is widely used to monitor the brain activities. The manual examination of these signals by experts is strenuous and time consuming. Hence, machine learning techniques can be used to improve the accuracy of detection. Nowadays, deep learning methodologies have been used in medical field to diagnose the health conditions precisely and aid the clinicians. In this study, a new deep one-dimensional convolutional neural network (1D CNN) model is proposed for the automatic recognition of normal and abnormal EEG signals. The proposed model is a complete end-to-end structure which classifies the EEG signals without requiring any feature extraction. In this study, we have used the EEG signals from temporal to occipital (T5–O1) single channel obtained from Temple University Hospital EEG Abnormal Corpus (v2.0.0) EEG dataset to develop the 1D CNN model. Our developed model has yielded the classification error rate of 20.66% in classifying the normal and abnormal EEG signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Acharya UR, Vinitha Sree S, Swapna G et al (2013) Automated EEG analysis of epilepsy: a review. Knowl Based Syst 45:147–165CrossRef Acharya UR, Vinitha Sree S, Swapna G et al (2013) Automated EEG analysis of epilepsy: a review. Knowl Based Syst 45:147–165CrossRef
3.
go back to reference Işik H, Sezer E (2012) Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform. J Med Syst 36:1–13CrossRef Işik H, Sezer E (2012) Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform. J Med Syst 36:1–13CrossRef
4.
go back to reference Acharya UR, Oh SL, Hagiwara Y et al (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278CrossRef Acharya UR, Oh SL, Hagiwara Y et al (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278CrossRef
5.
go back to reference Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 41(5):2391–2394CrossRef Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 41(5):2391–2394CrossRef
6.
go back to reference Lehmann C, Koenig T, Jelic V et al (2007) Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 161(2):342–350CrossRef Lehmann C, Koenig T, Jelic V et al (2007) Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 161(2):342–350CrossRef
7.
go back to reference Ahmadlou M, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of alzheimer disease. Alzheimer Dis Assoc Disord 25(1):85–92CrossRef Ahmadlou M, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of alzheimer disease. Alzheimer Dis Assoc Disord 25(1):85–92CrossRef
8.
go back to reference Kulkarni N, Bairagi V (2018) EEG-based diagnosis of alzheimer disease: a review and novel approaches for feature extraction and classification techniques. Academic Press, Cambridge Kulkarni N, Bairagi V (2018) EEG-based diagnosis of alzheimer disease: a review and novel approaches for feature extraction and classification techniques. Academic Press, Cambridge
10.
go back to reference Acharya UR, Oh SL, Hagiwara Y et al (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113CrossRef Acharya UR, Oh SL, Hagiwara Y et al (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113CrossRef
11.
go back to reference Acharya UR, Bhat S, Faust O et al (2015) Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 74(5–6):268–287CrossRef Acharya UR, Bhat S, Faust O et al (2015) Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 74(5–6):268–287CrossRef
12.
go back to reference Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (1958) Reticular formation of the brain. Little, Brown & Company, Boston Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (1958) Reticular formation of the brain. Little, Brown & Company, Boston
14.
go back to reference Medithe JWC, Nelakuditi UR (2016) Study of normal and abnormal EEG. In: 2016 3rd International conference on advanced computing and communication systems (ICACCS), vol 1. IEEE, pp. 1–4 Medithe JWC, Nelakuditi UR (2016) Study of normal and abnormal EEG. In: 2016 3rd International conference on advanced computing and communication systems (ICACCS), vol 1. IEEE, pp. 1–4
18.
go back to reference Bhattacharyya A, Pachori RB (2017) A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64(9):2003–2015CrossRef Bhattacharyya A, Pachori RB (2017) A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64(9):2003–2015CrossRef
20.
go back to reference Zandi AS, Tafreshi R, Javidan M, Dumont GA (2013) Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng 60(5):1401–1413CrossRef Zandi AS, Tafreshi R, Javidan M, Dumont GA (2013) Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng 60(5):1401–1413CrossRef
21.
go back to reference Aarabi A, He B (2017) Seizure prediction in patients with focal hippocampal epilepsy. Clin Neurophysiol 128(7):1299–1307CrossRef Aarabi A, He B (2017) Seizure prediction in patients with focal hippocampal epilepsy. Clin Neurophysiol 128(7):1299–1307CrossRef
22.
go back to reference Truong ND, Nguyen AD, Kuhlmann L et al (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111CrossRef Truong ND, Nguyen AD, Kuhlmann L et al (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111CrossRef
24.
go back to reference Parvez MZ, Paul M (2017) Seizure prediction using undulated global and local features. IEEE Trans Biomed Eng 64(1):208–217CrossRef Parvez MZ, Paul M (2017) Seizure prediction using undulated global and local features. IEEE Trans Biomed Eng 64(1):208–217CrossRef
26.
go back to reference Acharya UR, Hagiwara Y, Adeli H (2018) Automated seizure prediction. Epilepsy Behav 88:251–261CrossRef Acharya UR, Hagiwara Y, Adeli H (2018) Automated seizure prediction. Epilepsy Behav 88:251–261CrossRef
27.
go back to reference Acharya UR, Sree SV, Alvin AP et al (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(02):1250002CrossRef Acharya UR, Sree SV, Alvin AP et al (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22(02):1250002CrossRef
28.
go back to reference Tzimourta KD, Tzallas AT, Giannakeas N, et al (2018) Epileptic seizures classification based on long-term EEG signal wavelet analysis. In: IFMBE proceedings Tzimourta KD, Tzallas AT, Giannakeas N, et al (2018) Epileptic seizures classification based on long-term EEG signal wavelet analysis. In: IFMBE proceedings
32.
go back to reference Acharya UR, Sree SV, Suri JS (2011) Automatic detection of epileptic eeg signals using higher order cumulant features. Int J Neural Syst 21(5):403–414CrossRef Acharya UR, Sree SV, Suri JS (2011) Automatic detection of epileptic eeg signals using higher order cumulant features. Int J Neural Syst 21(5):403–414CrossRef
33.
go back to reference Acharya UR, Yanti R, Zheng JW et al (2013) Automated diagnosis of epilepsy using cwt, hos and texture parameters. Int J Neural Syst 23(03):1350009CrossRef Acharya UR, Yanti R, Zheng JW et al (2013) Automated diagnosis of epilepsy using cwt, hos and texture parameters. Int J Neural Syst 23(03):1350009CrossRef
34.
go back to reference Acharya UR, Vinitha Sree S, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 10:9072–9078CrossRef Acharya UR, Vinitha Sree S, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 10:9072–9078CrossRef
36.
go back to reference Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666CrossRef Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666CrossRef
37.
go back to reference Alotaiby TN, Alshebeili SA, Alshawi T et al (2014) EEG seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 2014(1):183CrossRef Alotaiby TN, Alshebeili SA, Alshawi T et al (2014) EEG seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 2014(1):183CrossRef
38.
go back to reference Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1CrossRef Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1CrossRef
39.
40.
go back to reference Coşkun M, Yildirim Ö, Uçar A, Demir Y (2017) An overview of popular deep learning methods. Eur J Tech 7(2):165–176CrossRef Coşkun M, Yildirim Ö, Uçar A, Demir Y (2017) An overview of popular deep learning methods. Eur J Tech 7(2):165–176CrossRef
43.
go back to reference Uçar A, Demir Y, Güzeliş C (2017) Object recognition and detection with deep learning for autonomous driving applications. Simulation 93(9):759–769CrossRef Uçar A, Demir Y, Güzeliş C (2017) Object recognition and detection with deep learning for autonomous driving applications. Simulation 93(9):759–769CrossRef
44.
go back to reference Beşer F, Kizrak MA, Bolat B, Yildirim T (2018) Recognition of sign language using capsule networks. In: 2018 26th IEEE signal processing and communications applications conference (SIU) Beşer F, Kizrak MA, Bolat B, Yildirim T (2018) Recognition of sign language using capsule networks. In: 2018 26th IEEE signal processing and communications applications conference (SIU)
46.
go back to reference Abdel-hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. In: 14th Annual conference of the international speech communication association (INTERSPEECH 2013), pp 3366–3370 Abdel-hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. In: 14th Annual conference of the international speech communication association (INTERSPEECH 2013), pp 3366–3370
49.
go back to reference Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 96:189–202CrossRef Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 96:189–202CrossRef
54.
go back to reference Lopez S, Suarez G, Jungreis D et al (2016) Automated identification of abnormal adult EEGs. In: 2015 IEEE signal processing in medicine and biology symposium—proceedings Lopez S, Suarez G, Jungreis D et al (2016) Automated identification of abnormal adult EEGs. In: 2015 IEEE signal processing in medicine and biology symposium—proceedings
55.
go back to reference American Clinical Neurophysiology Society (2006) Guideline 6: a proposal for standard montages to be used in clinical EEG. J Clin Neurophysiol 23(2):111CrossRef American Clinical Neurophysiology Society (2006) Guideline 6: a proposal for standard montages to be used in clinical EEG. J Clin Neurophysiol 23(2):111CrossRef
Metadata
Title
A deep convolutional neural network model for automated identification of abnormal EEG signals
Publication date
23-11-2018
Published in
Neural Computing and Applications / Issue 20/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3889-z

Other articles of this Issue 20/2020

Neural Computing and Applications 20/2020 Go to the issue

S.I. : Applying Artificial Intelligence to the Internet of Things

AI4SAFE-IoT: an AI-powered secure architecture for edge layer of Internet of things

S.I. : Applying Artificial Intelligence to the Internet of Things

An optimal pruning algorithm of classifier ensembles: dynamic programming approach

Premium Partner