Skip to main content
Top
Published in: Neural Computing and Applications 20/2020

05-03-2020 | S.I.: Recent Advances in Deep Learning for Medical Image Processing

ROI-based feature learning for efficient true positive prediction using convolutional neural network for lung cancer diagnosis

Authors: Supriya Suresh, Subaji Mohan

Published in: Neural Computing and Applications | Issue 20/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Convolutional neural network (CNN) is one of the deep structured algorithms widely applied to analyze the ability to visualize and extract the hidden texture features of image datasets. The study aims to automatically extract the self-learned features using an end-to-end learning CNN and compares the results with the conventional state-of-art and traditional computer-aided diagnosis system’s performance. The architecture consists of eight layers: one input layer, three convolutional layers and three sub-sampling layers intercepted with batch normalization, ReLu and max-pooling for salient feature extraction, and one fully connected layer that uses softmax function connected to 3 neurons as output layer, classifying an input image into one of three classes categorized as nodules \(\ge\) 3 mm as benign (low malignancy nodules), malignant (high malignancy nodules), and nodules < 3 mm and non-nodules \(\ge\) 3 mm combined as non-cancerous. For the input layer, lung nodule CT images are acquired from the Lung Image Database Consortium public repository having 1018 cases. Images are pre-processed to uniquely segment the nodule region of interest (NROI) in correspondence to four radiologists’ annotations and markings describing the coordinates and ground-truth values. A two-dimensional set of re-sampled images of size 52 \(\times\) 52 pixels with random translation, rotation, and scaling corresponding to the NROI are generated as input samples. In addition, generative adversarial networks (GANs) are employed to generate additional images with similar characteristics as pulmonary nodules. CNNs are trained using images generated by GAN and are fine-tuned with actual input samples to differentiate and classify the lung nodules based on the classification strategy. The pre-trained and fine-tuned process upon the trained network’s architecture results in aggregate probability scores for nodule detection reducing false positives. A total of 5188 images with an augmented image data store are used to enhance the performance of the network in the study generating high sensitivity scores with good true positives. Our proposed CNN achieved the classification accuracy of 93.9%, an average specificity of 93%, and an average sensitivity of 93.4% with reduced false positives and evaluated the area under the receiver operating characteristic curve with the highest observed value of 0.934 using the GAN generated images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Abbas Q (2017) Segmentation of differential structures on computed tomography images for diagnosis lung-related diseases. Biomed Signal Process Control 33:325–334CrossRef Abbas Q (2017) Segmentation of differential structures on computed tomography images for diagnosis lung-related diseases. Biomed Signal Process Control 33:325–334CrossRef
3.
go back to reference Al-Fahoum AS, Jaber EB, Al-Jarrah MA (2014) Automated detection of lung cancer using statistical and morphological image processing techniques. J Biomed Graph Comput 4(2):33 Al-Fahoum AS, Jaber EB, Al-Jarrah MA (2014) Automated detection of lung cancer using statistical and morphological image processing techniques. J Biomed Graph Comput 4(2):33
4.
go back to reference Amer HM, Abou-Chadi FE, Kishk SS, Obayya MI (2018) A computer-aided early detection system of pulmonary nodules in CT scan images. In: Proceedings of the 7th international conference on software and information engineering. ACM, pp 81–86 Amer HM, Abou-Chadi FE, Kishk SS, Obayya MI (2018) A computer-aided early detection system of pulmonary nodules in CT scan images. In: Proceedings of the 7th international conference on software and information engineering. ACM, pp 81–86
5.
go back to reference Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA (2017) Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput Methods Programs Biomed 141:19–26CrossRef Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA (2017) Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput Methods Programs Biomed 141:19–26CrossRef
6.
go back to reference Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G et al (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25(6):954CrossRef Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G et al (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25(6):954CrossRef
7.
go back to reference Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA et al (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931CrossRef Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA et al (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931CrossRef
8.
go back to reference Arulmurugan R, Anandakumar H (2018) Early detection of lung cancer using wavelet feature descriptor and feed forward back propagation neural networks classifier. In: Computational vision and bio inspired computing. Springer, Berlin, pp 103–110 Arulmurugan R, Anandakumar H (2018) Early detection of lung cancer using wavelet feature descriptor and feed forward back propagation neural networks classifier. In: Computational vision and bio inspired computing. Springer, Berlin, pp 103–110
9.
go back to reference Bhuvaneswari P, Therese AB (2015) Detection of cancer in lung with k-NN classification using genetic algorithm. Proc Mater Sci 10:433–440CrossRef Bhuvaneswari P, Therese AB (2015) Detection of cancer in lung with k-NN classification using genetic algorithm. Proc Mater Sci 10:433–440CrossRef
10.
go back to reference Chuquicusma MJ, Hussein S, Burt J, Bagci U (2018) How to fool radiologists with generative adversarial networks? A visual Turing test for lung cancer diagnosis. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 240–244 Chuquicusma MJ, Hussein S, Burt J, Bagci U (2018) How to fool radiologists with generative adversarial networks? A visual Turing test for lung cancer diagnosis. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 240–244
11.
go back to reference Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef
13.
go back to reference de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M (2018) Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network. Pattern Recognit 81:200–212CrossRef de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M (2018) Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network. Pattern Recognit 81:200–212CrossRef
14.
go back to reference El-Sherbiny B, Nabil N, El-Naby S.H, Emad Y, Ayman N, Mohiy T, AbdelRaouf A (2018) BLB (brain/lung cancer detection and segmentation and breast dense calculation). In: Deep and representation learning (IWDRL), 2018 first international workshop on. IEEE, pp 41–47 El-Sherbiny B, Nabil N, El-Naby S.H, Emad Y, Ayman N, Mohiy T, AbdelRaouf A (2018) BLB (brain/lung cancer detection and segmentation and breast dense calculation). In: Deep and representation learning (IWDRL), 2018 first international workshop on. IEEE, pp 41–47
15.
go back to reference Fernandes SL, Gurupur VP, Lin H, Martis RJ (2017) A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. J Med Imaging Health Inf 7(8):1841–1850CrossRef Fernandes SL, Gurupur VP, Lin H, Martis RJ (2017) A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. J Med Imaging Health Inf 7(8):1841–1850CrossRef
16.
go back to reference Firmino M, Morais AH, Mendoça RM, Dantas MR, Hekis HR, Valentim R (2014) Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. Biomed Eng Online 13(1):41CrossRef Firmino M, Morais AH, Mendoça RM, Dantas MR, Hekis HR, Valentim R (2014) Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. Biomed Eng Online 13(1):41CrossRef
17.
go back to reference Ghosh S, Dubey SK (2013) Comparative analysis of k-means and fuzzy c-means algorithms. Int J Adv Comput Sci Appl 4(4):35–39 Ghosh S, Dubey SK (2013) Comparative analysis of k-means and fuzzy c-means algorithms. Int J Adv Comput Sci Appl 4(4):35–39
18.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
19.
go back to reference Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inf 19(2):648–659CrossRef Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inf 19(2):648–659CrossRef
20.
go back to reference Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722CrossRef Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722CrossRef
21.
go back to reference Hochhegger B, Zanon M, Altmayer S, Pacini GS, Balbinot F, Francisco MZ, Dalla Costa R, Watte G, Santos MK, Barros MC et al (2018) Advances in imaging and automated quantification of malignant pulmonary diseases: a state-of-the-art review. Lung 196(6):633–642CrossRef Hochhegger B, Zanon M, Altmayer S, Pacini GS, Balbinot F, Francisco MZ, Dalla Costa R, Watte G, Santos MK, Barros MC et al (2018) Advances in imaging and automated quantification of malignant pulmonary diseases: a state-of-the-art review. Lung 196(6):633–642CrossRef
22.
go back to reference Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141
23.
go back to reference Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430CrossRef Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430CrossRef
24.
go back to reference Jacobs C, van Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, van Ginneken B (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26(7):2139–2147CrossRef Jacobs C, van Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, van Ginneken B (2016) Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Eur Radiol 26(7):2139–2147CrossRef
25.
go back to reference Javaid M, Javid M, Rehman MZU, Shah SIA (2016) A novel approach to CAD system for the detection of lung nodules in CT images. Comput Methods Programs Biomed 135:125–139CrossRef Javaid M, Javid M, Rehman MZU, Shah SIA (2016) A novel approach to CAD system for the detection of lung nodules in CT images. Comput Methods Programs Biomed 135:125–139CrossRef
26.
go back to reference Kalpana V, Rajini G (2016) Segmentation of lung lesion nodules using dicom with structuring elements and noise—a comparative study. In: Electrical, computer and electronics engineering (UPCON), 2016 IEEE Uttar Pradesh Section international conference on. IEEE, pp 252–257 Kalpana V, Rajini G (2016) Segmentation of lung lesion nodules using dicom with structuring elements and noise—a comparative study. In: Electrical, computer and electronics engineering (UPCON), 2016 IEEE Uttar Pradesh Section international conference on. IEEE, pp 252–257
27.
go back to reference Kaul C, Manandhar S, Pears N (2019) Focusnet: an attention-based fully convolutional network for medical image segmentation. arXiv preprint arXiv:1902.03091 Kaul C, Manandhar S, Pears N (2019) Focusnet: an attention-based fully convolutional network for medical image segmentation. arXiv preprint arXiv:​1902.​03091
28.
go back to reference Korkmaz S.A, Akçiçek A, Bínol H, Korkmaz M.F (2017) Recognition of the stomach cancer images with probabilistic hog feature vector histograms by using hog features. In: Intelligent systems and informatics (SISY), 2017 IEEE 15th international symposium on. IEEE, pp 000339–000342 Korkmaz S.A, Akçiçek A, Bínol H, Korkmaz M.F (2017) Recognition of the stomach cancer images with probabilistic hog feature vector histograms by using hog features. In: Intelligent systems and informatics (SISY), 2017 IEEE 15th international symposium on. IEEE, pp 000339–000342
29.
go back to reference Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209CrossRef Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209CrossRef
30.
go back to reference Lampert TA, Stumpf A, Gançarski P (2016) An empirical study into annotator agreement, ground truth estimation, and algorithm evaluation. IEEE Trans Image Process 25(6):2557–2572MathSciNetMATHCrossRef Lampert TA, Stumpf A, Gançarski P (2016) An empirical study into annotator agreement, ground truth estimation, and algorithm evaluation. IEEE Trans Image Process 25(6):2557–2572MathSciNetMATHCrossRef
31.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
32.
go back to reference Li C, Zhu G, Wu X, Wang Y (2018) False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks. IEEE Access 6:16060–16067CrossRef Li C, Zhu G, Wu X, Wang Y (2018) False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks. IEEE Access 6:16060–16067CrossRef
33.
go back to reference Lindsay W, Wang J, Sachs N, Barbosa E, Gee J (2018) Transfer learning approach to predict biopsy-confirmed malignancy of lung nodules from imaging data: a pilot study. In: Image analysis for moving organ, breast, and thoracic images. Springer, Berlin, pp 295–301 Lindsay W, Wang J, Sachs N, Barbosa E, Gee J (2018) Transfer learning approach to predict biopsy-confirmed malignancy of lung nodules from imaging data: a pilot study. In: Image analysis for moving organ, breast, and thoracic images. Springer, Berlin, pp 295–301
34.
go back to reference Lu L, Yapeng L, Hongyuan Z (2018) Benign and malignant solitary pulmonary nodules classification based on CNN and SVM. In: Proceedings of the international conference on machine vision and applications. ACM, pp 46–50 Lu L, Yapeng L, Hongyuan Z (2018) Benign and malignant solitary pulmonary nodules classification based on CNN and SVM. In: Proceedings of the international conference on machine vision and applications. ACM, pp 46–50
35.
go back to reference Makaju S, Prasad P, Alsadoon A, Singh A, Elchouemi A (2018) Lung cancer detection using CT scan images. Proc Comput Sci 125:107–114CrossRef Makaju S, Prasad P, Alsadoon A, Singh A, Elchouemi A (2018) Lung cancer detection using CT scan images. Proc Comput Sci 125:107–114CrossRef
36.
go back to reference Manikandan T, Bharathi N (2016) A survey on computer-aided diagnosis systems for lung cancer detection. Int Res J Eng Technol 3(5):1562–70 Manikandan T, Bharathi N (2016) A survey on computer-aided diagnosis systems for lung cancer detection. Int Res J Eng Technol 3(5):1562–70
37.
go back to reference Masood A, Sheng B, Li P, Hou X, Wei X, Qin J, Feng D (2018) Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. J Biomed Inf 79:117–128CrossRef Masood A, Sheng B, Li P, Hou X, Wei X, Qin J, Feng D (2018) Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. J Biomed Inf 79:117–128CrossRef
38.
go back to reference Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst Appl 42(4):2184–2197CrossRef Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst Appl 42(4):2184–2197CrossRef
39.
go back to reference Nishio M, Sugiyama O, Yakami M, Ueno S, Kubo T, Kuroda T, Togashi K (2018) Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 13(7):e0200721CrossRef Nishio M, Sugiyama O, Yakami M, Ueno S, Kubo T, Kuroda T, Togashi K (2018) Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 13(7):e0200721CrossRef
40.
go back to reference Obayya M, Ghandour M (2015) Lung cancer classification using curvelet transform and neural network with radial basis function. Int J Comput Appl 120(13):33–37 Obayya M, Ghandour M (2015) Lung cancer classification using curvelet transform and neural network with radial basis function. Int J Comput Appl 120(13):33–37
41.
go back to reference Orozco HM, Villegas OOV, Sánchez VGC, Domínguez HdJO, Alfaro MdJN (2015) Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed Eng Online 14(1):9CrossRef Orozco HM, Villegas OOV, Sánchez VGC, Domínguez HdJO, Alfaro MdJN (2015) Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed Eng Online 14(1):9CrossRef
42.
go back to reference Ozekes S, Osman O (2010) Computerized lung nodule detection using 3D feature extraction and learning based algorithms. J Med Syst 34(2):185–194CrossRef Ozekes S, Osman O (2010) Computerized lung nodule detection using 3D feature extraction and learning based algorithms. J Med Syst 34(2):185–194CrossRef
43.
go back to reference Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: imagenet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, Berlin, pp 525–542 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: imagenet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, Berlin, pp 525–542
44.
go back to reference Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2015) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181CrossRef Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2015) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181CrossRef
45.
go back to reference Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181CrossRef Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181CrossRef
46.
go back to reference Saad M.N, Muda Z, Ashaari N.S, Hamid H.A (2014) Image segmentation for lung region in chest X-ray images using edge detection and morphology. In: Control system, computing and engineering (ICCSCE), 2014 IEEE international conference on. IEEE, pp 46–51 Saad M.N, Muda Z, Ashaari N.S, Hamid H.A (2014) Image segmentation for lung region in chest X-ray images using edge detection and morphology. In: Control system, computing and engineering (ICCSCE), 2014 IEEE international conference on. IEEE, pp 46–51
47.
go back to reference Serj M.F, Lavi B, Hoff G, Valls D.P (2018) A deep convolutional neural network for lung cancer diagnostic. arXiv preprint arXiv:1804.08170 Serj M.F, Lavi B, Hoff G, Valls D.P (2018) A deep convolutional neural network for lung cancer diagnostic. arXiv preprint arXiv:​1804.​08170
48.
go back to reference Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sánchez CI, van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169CrossRef Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sánchez CI, van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169CrossRef
49.
go back to reference Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit 61:663–673CrossRef Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit 61:663–673CrossRef
50.
go back to reference Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, Suzuki K (2019) A deep cnn based transfer learning method for false positive reduction. Multimed Tools Appl 78(1):1017–1033CrossRef Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, Suzuki K (2019) A deep cnn based transfer learning method for false positive reduction. Multimed Tools Appl 78(1):1017–1033CrossRef
52.
go back to reference Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel roi based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539CrossRef Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel roi based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539CrossRef
53.
go back to reference Takahashi R, Kajikawa Y (2017) Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inf 101:58–67CrossRef Takahashi R, Kajikawa Y (2017) Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inf 101:58–67CrossRef
54.
go back to reference Tan J, Huo Y, Liang Z, Li L (2017) Apply convolutional neural network to lung nodule detection: recent progress and challenges. In: International conference on smart health. Springer, Berlin, pp 214–222 Tan J, Huo Y, Liang Z, Li L (2017) Apply convolutional neural network to lung nodule detection: recent progress and challenges. In: International conference on smart health. Springer, Berlin, pp 214–222
55.
go back to reference Team NLSTR (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409 Team NLSTR (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409
56.
go back to reference Wan S, Lee HC, Huang X, Xu T, Xu T, Zeng X, Zhang Z, Sheikine Y, Connolly JL, Fujimoto JG et al (2017) Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med Image Anal 38:104–116CrossRef Wan S, Lee HC, Huang X, Xu T, Xu T, Zeng X, Zhang Z, Sheikine Y, Connolly JL, Fujimoto JG et al (2017) Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med Image Anal 38:104–116CrossRef
59.
go back to reference Woźniak M, Połap D, Capizzi G, Sciuto GL, Kośmider L, Frankiewicz K (2018) Small lung nodules detection based on local variance analysis and probabilistic neural network. Comput Methods Programs Biomed 161:173–180CrossRef Woźniak M, Połap D, Capizzi G, Sciuto GL, Kośmider L, Frankiewicz K (2018) Small lung nodules detection based on local variance analysis and probabilistic neural network. Comput Methods Programs Biomed 161:173–180CrossRef
60.
go back to reference Xie H, Yang D, Sun N, Chen Z, Zhang Y (2019) Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit 85:109–119CrossRef Xie H, Yang D, Sun N, Chen Z, Zhang Y (2019) Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit 85:109–119CrossRef
61.
go back to reference Zeng JY, Ye HH, Yang SX, Jin RC, Huang QL, Wei YC, Huang SG, Wang BQ, Ye JZ, Qin JY (2015) Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule. International J Clin Exp Med 8(9):16077 Zeng JY, Ye HH, Yang SX, Jin RC, Huang QL, Wei YC, Huang SG, Wang BQ, Ye JZ, Qin JY (2015) Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule. International J Clin Exp Med 8(9):16077
Metadata
Title
ROI-based feature learning for efficient true positive prediction using convolutional neural network for lung cancer diagnosis
Authors
Supriya Suresh
Subaji Mohan
Publication date
05-03-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04787-w

Other articles of this Issue 20/2020

Neural Computing and Applications 20/2020 Go to the issue

S.I. : Applying Artificial Intelligence to the Internet of Things

An optimal pruning algorithm of classifier ensembles: dynamic programming approach

S.I. : Applying Artificial Intelligence to the Internet of Things

Deep neural network-based clustering technique for secure IIoT

S.I. : Recent Advances in Deep Learning for Medical Image Processing

Brain tumor detection based on extreme learning

Premium Partner