Skip to main content
Top
Published in: Journal of Materials Science 24/2020

08-05-2020 | Composites & nanocomposites

A flexible, printable, thin-film thermoelectric generator based on reduced graphene oxide–carbon nanotubes composites

Authors: Tariq Mehmood, Jin Ho Kim, Do-Joong Lee, Sergey Dizhur, Elizabeth S. Hirst, Richard M. Osgood III, Muhammad Hassan Sayyad, Munawar Ali Munawar, Jimmy Xu

Published in: Journal of Materials Science | Issue 24/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoelectric energy harvesting is one of the keystones of modern green renewable energy generation. Unfortunately, most conventional state-of-the-art inorganic semiconductor thermoelectric generators are expensive, fragile, and not flexible. Considering these limitations, we developed a flexible printable thermoelectric generator (TEG) with both n-type and p-type organic composites of reduced graphene oxide, carbon nanotubes, poly(3,4-ethylenedixoythiphene)–polystyrene sulfate, and lead sulfide composite materials. We constructed a TEG of ten alternating np pairs as a prototype with an effective area of 1.4 cm2 each, which generated 13 mV thermovoltage at operating temperature difference of 77 °C. It demonstrates that its fabrication is scalable, printable, and relatively simple, and the resultant structure is flexible, conformal, and reconfigurable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377CrossRef Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377CrossRef
2.
go back to reference Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nature Commun 5:4515CrossRef Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nature Commun 5:4515CrossRef
3.
go back to reference Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef
4.
go back to reference Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):16050CrossRef Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):16050CrossRef
5.
go back to reference Qu D, Li X, Wang H, Chen G (2019) Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv Sci 6(15):1900584CrossRef Qu D, Li X, Wang H, Chen G (2019) Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv Sci 6(15):1900584CrossRef
6.
go back to reference Oh JY, Lee JH, Han SW, Chae SS, Bae EJ, Kang YH, Choi WJ, Cho SY, Lee J-O, Baik HK, Lee TI (2016) Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9(5):1696–1705CrossRef Oh JY, Lee JH, Han SW, Chae SS, Bae EJ, Kang YH, Choi WJ, Cho SY, Lee J-O, Baik HK, Lee TI (2016) Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9(5):1696–1705CrossRef
7.
go back to reference Tan G, Zhao L-D, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19):12123–12149CrossRef Tan G, Zhao L-D, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19):12123–12149CrossRef
8.
go back to reference Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef
9.
go back to reference Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917CrossRef Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917CrossRef
10.
go back to reference Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(44):22065–22071CrossRef Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(44):22065–22071CrossRef
11.
go back to reference Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564CrossRef Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564CrossRef
12.
go back to reference Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA, Bacher G, Mertin W (2013) The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102(2):023114CrossRef Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA, Bacher G, Mertin W (2013) The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102(2):023114CrossRef
13.
go back to reference Huang H, Li Z, She J, Wang W (2012) Oxygen density dependent band gap of reduced graphene oxide. J Appl Phys 111(5):054317CrossRef Huang H, Li Z, She J, Wang W (2012) Oxygen density dependent band gap of reduced graphene oxide. J Appl Phys 111(5):054317CrossRef
14.
go back to reference Yan J-A, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B 82(12):125403CrossRef Yan J-A, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B 82(12):125403CrossRef
15.
go back to reference Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9):7640–7647CrossRef Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9):7640–7647CrossRef
16.
go back to reference Tu NDK, Choi J, Park CR, Kim H (2015) Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem Mater 27(21):7362–7369CrossRef Tu NDK, Choi J, Park CR, Kim H (2015) Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem Mater 27(21):7362–7369CrossRef
17.
go back to reference Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S (2017) High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat Commun 8(1):14886CrossRef Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S (2017) High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat Commun 8(1):14886CrossRef
18.
go back to reference Qu D, Huang X, Li X, Wang H, Chen G (2020) Annular flexible thermoelectric devices with integrated-module architecture. npj Flex Electron 4(1):1–7CrossRef Qu D, Huang X, Li X, Wang H, Chen G (2020) Annular flexible thermoelectric devices with integrated-module architecture. npj Flex Electron 4(1):1–7CrossRef
19.
go back to reference Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10(11):1196CrossRef Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10(11):1196CrossRef
20.
go back to reference Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80(5):1042–1045CrossRef Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80(5):1042–1045CrossRef
21.
go back to reference Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804CrossRef Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804CrossRef
22.
go back to reference Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22(14):6959–6964CrossRef Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22(14):6959–6964CrossRef
23.
go back to reference Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123(46):11512–11513CrossRef Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123(46):11512–11513CrossRef
24.
go back to reference Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G (2017) Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 11(6):5746–5752CrossRef Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G (2017) Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 11(6):5746–5752CrossRef
25.
go back to reference Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee E-H, Shin H-J, Choi J-Y, Lee YH (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee E-H, Shin H-J, Choi J-Y, Lee YH (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131(1):327–331CrossRef
26.
go back to reference Cho C, Culebras M, Wallace KL, Song Y, Holder K, Hsu J-H, Yu C, Grunlan JC (2016) Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy 28:426–432CrossRef Cho C, Culebras M, Wallace KL, Song Y, Holder K, Hsu J-H, Yu C, Grunlan JC (2016) Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy 28:426–432CrossRef
27.
go back to reference Mehmood T, Kim JH, Lee D-J, Dizhur S, Odessey R, Hirst ES, Osgood RM, Sayyad MH, Munawar MA, Xu J (2019) A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films. Mater Res Express 6(7):075614CrossRef Mehmood T, Kim JH, Lee D-J, Dizhur S, Odessey R, Hirst ES, Osgood RM, Sayyad MH, Munawar MA, Xu J (2019) A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films. Mater Res Express 6(7):075614CrossRef
28.
go back to reference Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778CrossRef Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778CrossRef
29.
go back to reference Wahab F, Fernandes GE, Kim JH, Jung S, Kim K-B, Hassan Sayyad M, Xu J (2014) High seebeck coefficient in solution-grown PbS films. J Electron Mater 43(2):348–352CrossRef Wahab F, Fernandes GE, Kim JH, Jung S, Kim K-B, Hassan Sayyad M, Xu J (2014) High seebeck coefficient in solution-grown PbS films. J Electron Mater 43(2):348–352CrossRef
30.
go back to reference Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109(21):10567–10573CrossRef Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109(21):10567–10573CrossRef
31.
go back to reference Molina-Duarte J, Espinosa-Vega LI, Rodríguez AG, Guirado-López RA (2017) Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Phys Chem Chem Phys 19(10):7215–7227CrossRef Molina-Duarte J, Espinosa-Vega LI, Rodríguez AG, Guirado-López RA (2017) Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Phys Chem Chem Phys 19(10):7215–7227CrossRef
32.
go back to reference Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550CrossRef Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550CrossRef
Metadata
Title
A flexible, printable, thin-film thermoelectric generator based on reduced graphene oxide–carbon nanotubes composites
Authors
Tariq Mehmood
Jin Ho Kim
Do-Joong Lee
Sergey Dizhur
Elizabeth S. Hirst
Richard M. Osgood III
Muhammad Hassan Sayyad
Munawar Ali Munawar
Jimmy Xu
Publication date
08-05-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04750-z

Other articles of this Issue 24/2020

Journal of Materials Science 24/2020 Go to the issue

Premium Partners