Skip to main content
Top
Published in: Rare Metals 3/2024

30-04-2019

A high-performance lithium anode based on N-doped composite graphene

Authors: Can Jiao, Hao-Bo Sun, Li Zhang, Shang-Qian Zhao, Guo-Yao Pang, Chun-Rong Zhao, Shi-Gang Lu

Published in: Rare Metals | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. In order to push the commercialization of the lithium metal batteries, a kind of nitrogen(N)-doped composite graphene (NCG) adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth. Furthermore, a new kind of sandwich-type composite lithium metal (STCL) electrode was developed to improve its application. The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth. In a symmetric battery, the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV. And due to the creative design, the STCL promises the Li–S battery with a prolonged cycling lifespan.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Evers S, Nazar LF. New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. 2013;46(5):1135.CrossRefPubMed Evers S, Nazar LF. New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. 2013;46(5):1135.CrossRefPubMed
[2]
go back to reference Wang Y, Sahadeo E, Rubloff G, Lin CF, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sic. 2019;54(5):3671.ADSCrossRef Wang Y, Sahadeo E, Rubloff G, Lin CF, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sic. 2019;54(5):3671.ADSCrossRef
[3]
go back to reference Girishkumar G, Mccloskey B, Luntz AC, Swanson S, Wilcke WW. Lithium–air battery: promise and challenges. J Phy Chem Lett. 2010;1(14):2193.CrossRef Girishkumar G, Mccloskey B, Luntz AC, Swanson S, Wilcke WW. Lithium–air battery: promise and challenges. J Phy Chem Lett. 2010;1(14):2193.CrossRef
[4]
go back to reference Zhang SS, Kang X, Read J. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources. 2011;196(8):3906.CrossRef Zhang SS, Kang X, Read J. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources. 2011;196(8):3906.CrossRef
[5]
go back to reference Zhu X, Zhao TS, Tan P, Wei Z, Wu M. A high-performance solid-state lithium–oxygen battery with a ceramic-carbon nanostructured electrode. Nano Energy. 2016;26:565.CrossRef Zhu X, Zhao TS, Tan P, Wei Z, Wu M. A high-performance solid-state lithium–oxygen battery with a ceramic-carbon nanostructured electrode. Nano Energy. 2016;26:565.CrossRef
[6]
go back to reference Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech. 2017;12(3):194.ADSCrossRef Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech. 2017;12(3):194.ADSCrossRef
[7]
go back to reference Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.CrossRef Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.CrossRef
[8]
go back to reference Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef
[9]
go back to reference Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef
[10]
go back to reference Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater. 2018;8(13):1702296.CrossRef Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater. 2018;8(13):1702296.CrossRef
[11]
go back to reference Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.CrossRefPubMed Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.CrossRefPubMed
[12]
go back to reference Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRefPubMed Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRefPubMed
[13]
go back to reference Obrovac MN, Christensen L, Le DB, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.CrossRef Obrovac MN, Christensen L, Le DB, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.CrossRef
[14]
go back to reference Kim JH, Myung ST, Sun YK. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta. 2004;49(2):219.CrossRef Kim JH, Myung ST, Sun YK. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta. 2004;49(2):219.CrossRef
[15]
go back to reference Fung YS, Zhou RQ. Room temperature molten salt as medium for lithium battery. J Power Sources. 1999;s81–82(81):891.ADSCrossRef Fung YS, Zhou RQ. Room temperature molten salt as medium for lithium battery. J Power Sources. 1999;s81–82(81):891.ADSCrossRef
[16]
go back to reference Zhang XQ, Cheng XB, Chen X, Chong Y, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.CrossRef Zhang XQ, Cheng XB, Chen X, Chong Y, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.CrossRef
[17]
go back to reference Jia L, Wu T, Lu J. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mat Interfaces. 2016;44(8):30248.CrossRef Jia L, Wu T, Lu J. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mat Interfaces. 2016;44(8):30248.CrossRef
[18]
go back to reference Ma G, Wen Z, Jin J, Wu MF, Zhang GX, Wu XW, Zhang JC. The enhanced performance of Li–S battery with P14YRTFSI-modified electrolyte. Solid State Ionics. 2014;262:174.CrossRef Ma G, Wen Z, Jin J, Wu MF, Zhang GX, Wu XW, Zhang JC. The enhanced performance of Li–S battery with P14YRTFSI-modified electrolyte. Solid State Ionics. 2014;262:174.CrossRef
[19]
go back to reference Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 2019;16:411.CrossRef Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 2019;16:411.CrossRef
[20]
go back to reference Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28(8):1705838.CrossRef Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28(8):1705838.CrossRef
[21]
go back to reference Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853.CrossRefPubMed Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853.CrossRefPubMed
[22]
go back to reference Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRefPubMed Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRefPubMed
[23]
go back to reference Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014;261:112.CrossRef Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014;261:112.CrossRef
[24]
go back to reference Johanna KS, Yi D, Paul AK. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of Co-deposited sodium. J Electrochem Soc. 2013;160(9):D337.CrossRef Johanna KS, Yi D, Paul AK. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of Co-deposited sodium. J Electrochem Soc. 2013;160(9):D337.CrossRef
[25]
go back to reference Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotech. 2016;11(7):626.ADSCrossRef Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotech. 2016;11(7):626.ADSCrossRef
[26]
go back to reference Zhang R, Chen X, Xiang C, Chen X, Zhang X, Chong Y, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017;129(27):7764.CrossRef Zhang R, Chen X, Xiang C, Chen X, Zhang X, Chong Y, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017;129(27):7764.CrossRef
[27]
go back to reference Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.CrossRef Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.CrossRef
[28]
go back to reference Yang G, Chen J, Xiao P, Agboola P, Shakir I, Xu Y. Graphene anchored on Cu foam as lithiophilic 3D current collectors for stable and dendrite-free lithium metal anode. J Mater Chem A. 2018;6(21):9899.CrossRef Yang G, Chen J, Xiao P, Agboola P, Shakir I, Xu Y. Graphene anchored on Cu foam as lithiophilic 3D current collectors for stable and dendrite-free lithium metal anode. J Mater Chem A. 2018;6(21):9899.CrossRef
[29]
go back to reference Gu J, Du Z, Zhang C, Ma J, Lin B, Yang S. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv Energy Mater. 2017;7(17):1700447.CrossRef Gu J, Du Z, Zhang C, Ma J, Lin B, Yang S. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv Energy Mater. 2017;7(17):1700447.CrossRef
[30]
go back to reference Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem. Comm. 2017;53(94):12642.CrossRefPubMed Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem. Comm. 2017;53(94):12642.CrossRefPubMed
[31]
go back to reference Gu J, Du Z, Zhang C, Yang S. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv Energy Mater. 2016;6(18):1600917.CrossRef Gu J, Du Z, Zhang C, Yang S. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv Energy Mater. 2016;6(18):1600917.CrossRef
[32]
go back to reference Yan K, Lu Z, Lee HW, Xiong F, Hsu P, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy. 2016;1(3):16010.ADSCrossRef Yan K, Lu Z, Lee HW, Xiong F, Hsu P, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy. 2016;1(3):16010.ADSCrossRef
Metadata
Title
A high-performance lithium anode based on N-doped composite graphene
Authors
Can Jiao
Hao-Bo Sun
Li Zhang
Shang-Qian Zhao
Guo-Yao Pang
Chun-Rong Zhao
Shi-Gang Lu
Publication date
30-04-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2024
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01263-w

Other articles of this Issue 3/2024

Rare Metals 3/2024 Go to the issue

Premium Partners