Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2022

01-02-2022 | Research Article-Computer Engineering and Computer Science

A Hybrid Approach of Spotted Hyena Optimization Integrated with Quadratic Approximation for Training Wavelet Neural Network

Authors: Nibedan Panda, Santosh Kumar Majhi, Rosy Pradhan

Published in: Arabian Journal for Science and Engineering | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spotted hyena optimization (SHO) is one of the newly evolved swarm-based metaheuristic optimization methods based on the social life cycle of hyenas. In recent times SHO is being applied to various engineering applications as well as to solve real-life complications. In this paper, we have hybridized SHO with quadratic approximation operator (QAO), termed as QASHO. The proposed QASHO has been scrutinized to enhance the exploitation ability, aiming to achieve global optimum, as QAO performs better within the local confinement region. Furthermore, the proposed approach shows improved strength in terms of escaping from the local minima trap, as in each iteration we discard some of the worst individuals by some suitable ones. To validate the proficiency of the proposed QASHO approach, 28 standard problems have been preferred in connection with IEEE-CEC-2017. The outcome observed from the suggested method has also equated with contemporary metaheuristic approaches. To prove the statistical significance, a nonparametric test has also been accomplished. Additionally as a real-life application, the suggested approach QASHO has utilized to train wavelet higher-order neural networks (HONN) by choosing datasets from the UCI store. The above correlations reveal that QASHO can deal with complex optimization tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dhiman, G.: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 222, 106926 (2021)CrossRef Dhiman, G.: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 222, 106926 (2021)CrossRef
2.
go back to reference Zheng, X.; Qin, A.K.; Gong, M.; Zhou, D.: Self-regulated evolutionary multitask optimization. IEEE Trans. Evol. Comput. 24(1), 16–28 (2019)CrossRef Zheng, X.; Qin, A.K.; Gong, M.; Zhou, D.: Self-regulated evolutionary multitask optimization. IEEE Trans. Evol. Comput. 24(1), 16–28 (2019)CrossRef
3.
go back to reference Quwaider, M.; Shatnawi, Y.: Neural network model as internet of things congestion control using PID controller and immune-hill-climbing algorithm. Simul Model Pract Theory 101, 102022 (2020)CrossRef Quwaider, M.; Shatnawi, Y.: Neural network model as internet of things congestion control using PID controller and immune-hill-climbing algorithm. Simul Model Pract Theory 101, 102022 (2020)CrossRef
4.
go back to reference Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152, 113377 (2020)CrossRef Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152, 113377 (2020)CrossRef
5.
go back to reference Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.:Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput. 1–29 (2020) Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.:Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput. 1–29 (2020)
6.
go back to reference Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 1–24 (2020) Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 1–24 (2020)
7.
go back to reference Krishna, M.M., Panda, N. and Majhi, S.K.: Solving traveling salesman problem using hybridization of rider optimization and spotted hyena optimization algorithm. Expert Syst. Appl. 115353 Krishna, M.M., Panda, N. and Majhi, S.K.: Solving traveling salesman problem using hybridization of rider optimization and spotted hyena optimization algorithm. Expert Syst. Appl. 115353
8.
go back to reference Slowik, A.; Kwasnicka, H.: Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans. Industr. Inf. 14(3), 1004–1015 (2017)CrossRef Slowik, A.; Kwasnicka, H.: Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans. Industr. Inf. 14(3), 1004–1015 (2017)CrossRef
9.
go back to reference Panda, N.; Majhi, S.K.: How effective is the salp swarm algorithm in data classification. In: Computational intelligence in pattern recognition, pp. 579–588. Springer, Singapore (2020)CrossRef Panda, N.; Majhi, S.K.: How effective is the salp swarm algorithm in data classification. In: Computational intelligence in pattern recognition, pp. 579–588. Springer, Singapore (2020)CrossRef
10.
go back to reference Das, H., Naik, B., Behera, H.S., Jaiswal, S., Mahato, P. and Rout, M.: Biomedical data analysis using neuro-fuzzy model with post-feature reduction. J. King Saud Univ. Comput. Inf. Sci. (2020) Das, H., Naik, B., Behera, H.S., Jaiswal, S., Mahato, P. and Rout, M.: Biomedical data analysis using neuro-fuzzy model with post-feature reduction. J. King Saud Univ. Comput. Inf. Sci. (2020)
11.
go back to reference Lee, C.Y.; Yao, X.: Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)CrossRef Lee, C.Y.; Yao, X.: Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)CrossRef
12.
go back to reference Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995) Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
13.
go back to reference Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks, pp. 43–55. Springer, Cham (2019)MATHCrossRef Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks, pp. 43–55. Springer, Cham (2019)MATHCrossRef
14.
go back to reference Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRef Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRef
15.
go back to reference Dhiman, G.; Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)CrossRef Dhiman, G.; Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)CrossRef
16.
go back to reference Dorigo, M.; Birattari, M.; Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef Dorigo, M.; Birattari, M.; Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef
17.
go back to reference Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetMATH Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetMATH
18.
go back to reference Erol, O.K.; Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)CrossRef Erol, O.K.; Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)CrossRef
19.
go back to reference Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRef Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRef
20.
go back to reference Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRef Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRef
21.
go back to reference Panda, N.; Majhi, S.K.: Improved salp swarm algorithm with space transformation search for training neural network. Arab. J. Sci. Eng. 45(4), 2743–2761 (2020)CrossRef Panda, N.; Majhi, S.K.: Improved salp swarm algorithm with space transformation search for training neural network. Arab. J. Sci. Eng. 45(4), 2743–2761 (2020)CrossRef
22.
go back to reference Panda, N.; Majhi, S.K.: Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network. Comput. Intell. 36(1), 320–350 (2020)MathSciNetCrossRef Panda, N.; Majhi, S.K.: Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network. Comput. Intell. 36(1), 320–350 (2020)MathSciNetCrossRef
23.
go back to reference Panda, N., Majhi, S.K.: Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks. Multimed. Tools Appl. 1–25 (2021) Panda, N., Majhi, S.K.: Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks. Multimed. Tools Appl. 1–25 (2021)
24.
go back to reference Deep, K.; Das, K.N.: Quadratic approximation based hybrid genetic algorithm for function optimization. Appl. Math. Comput. 203(1), 86–98 (2008)MATH Deep, K.; Das, K.N.: Quadratic approximation based hybrid genetic algorithm for function optimization. Appl. Math. Comput. 203(1), 86–98 (2008)MATH
25.
26.
go back to reference Gupta, K.; Deep, K.; Bansal, J.C.: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization. Comput. Intell. 33(2), 210–240 (2017)MathSciNetCrossRef Gupta, K.; Deep, K.; Bansal, J.C.: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization. Comput. Intell. 33(2), 210–240 (2017)MathSciNetCrossRef
27.
go back to reference Chen, X.; Mei, C.; Xu, B.; Yu, K.; Huang, X.: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl.-Based Syst. 145, 250–263 (2018)CrossRef Chen, X.; Mei, C.; Xu, B.; Yu, K.; Huang, X.: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl.-Based Syst. 145, 250–263 (2018)CrossRef
28.
go back to reference Turgut, M.S.; Demir, G.K.: Quadratic approximation–based hybrid Artificial Cooperative Search algorithm for economic emission load dispatch problems. Int. Trans. Electr. Energy Syst. 27(4), e2284 (2017)CrossRef Turgut, M.S.; Demir, G.K.: Quadratic approximation–based hybrid Artificial Cooperative Search algorithm for economic emission load dispatch problems. Int. Trans. Electr. Energy Syst. 27(4), e2284 (2017)CrossRef
29.
go back to reference Naidu, Y.R.; Ojha, A.K.: A hybrid version of invasive weed optimization with quadratic approximation. Soft. Comput. 19(12), 3581–3598 (2015)CrossRef Naidu, Y.R.; Ojha, A.K.: A hybrid version of invasive weed optimization with quadratic approximation. Soft. Comput. 19(12), 3581–3598 (2015)CrossRef
30.
go back to reference Jia, H.; Li, J.; Song, W.; Peng, X.; Lang, C.; Li, Y.: Spotted hyena optimization algorithm with simulated annealing for feature selection. IEEE Access 7, 71943–71962 (2019)CrossRef Jia, H.; Li, J.; Song, W.; Peng, X.; Lang, C.; Li, Y.: Spotted hyena optimization algorithm with simulated annealing for feature selection. IEEE Access 7, 71943–71962 (2019)CrossRef
31.
go back to reference Dhiman, G.; Kaur, A.: A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In: Soft Computing for Problem Solving, pp. 599–615. Springer, Singapore (2019)CrossRef Dhiman, G.; Kaur, A.: A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In: Soft Computing for Problem Solving, pp. 599–615. Springer, Singapore (2019)CrossRef
32.
go back to reference Kaur, S., Awasthi, L.K. and Sangal, A.L.: HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems. Eng. Comput. 1–37 (2020) Kaur, S., Awasthi, L.K. and Sangal, A.L.: HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems. Eng. Comput. 1–37 (2020)
33.
go back to reference Dhiman, G.; Kumar, V.: Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. In: Harmony Search and nature Inspired Optimization Algorithms, pp. 857–867. Springer, Singapore (2019)CrossRef Dhiman, G.; Kumar, V.: Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. In: Harmony Search and nature Inspired Optimization Algorithms, pp. 857–867. Springer, Singapore (2019)CrossRef
34.
go back to reference Dhiman, G.; Kumar, V.: Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst. 150, 175–197 (2018)CrossRef Dhiman, G.; Kumar, V.: Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst. 150, 175–197 (2018)CrossRef
35.
go back to reference Dhiman, G.; Kaur, A.: Optimizing the design of airfoil and optical buffer problems using spotted hyena optimizer. Designs 2(3), 28 (2018)CrossRef Dhiman, G.; Kaur, A.: Optimizing the design of airfoil and optical buffer problems using spotted hyena optimizer. Designs 2(3), 28 (2018)CrossRef
36.
go back to reference Dhiman, G. and Kaur, A.: Spotted hyena optimizer for solving engineering design problems. In: 2017 International Conference on Machine Learning and Data Science (MLDS), pp. 114–119. IEEE (2017) Dhiman, G. and Kaur, A.: Spotted hyena optimizer for solving engineering design problems. In: 2017 International Conference on Machine Learning and Data Science (MLDS), pp. 114–119. IEEE (2017)
37.
go back to reference Yıldız, B.S.: The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater. Test. 62(4), 383–388 (2020)CrossRef Yıldız, B.S.: The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater. Test. 62(4), 383–388 (2020)CrossRef
38.
go back to reference Zhou, G.; Li, J.; Tang, Z.; Luo, Q.; Zhou, Y.: An improved spotted hyena optimizer for PID parameters in an AVR system. Math. Biosci. Eng. 17(4), 3767 (2020)MATHCrossRef Zhou, G.; Li, J.; Tang, Z.; Luo, Q.; Zhou, Y.: An improved spotted hyena optimizer for PID parameters in an AVR system. Math. Biosci. Eng. 17(4), 3767 (2020)MATHCrossRef
39.
go back to reference Moayedi, H.; Tien Bui, D.; Anastasios, D.; Kalantar, B.: Spotted hyena optimizer and ant lion optimization in predicting the shear strength of soil. Appl. Sci. 9(22), 4738 (2019)CrossRef Moayedi, H.; Tien Bui, D.; Anastasios, D.; Kalantar, B.: Spotted hyena optimizer and ant lion optimization in predicting the shear strength of soil. Appl. Sci. 9(22), 4738 (2019)CrossRef
40.
go back to reference Dhiman, G.; Guo, S.; Kaur, S.: ED-SHO: a framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer. Mod. Phys. Lett. A 33(40), 1850239 (2018)CrossRef Dhiman, G.; Guo, S.; Kaur, S.: ED-SHO: a framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer. Mod. Phys. Lett. A 33(40), 1850239 (2018)CrossRef
41.
go back to reference Elsabagh, M.A.; Farhan, M.S.; Gafar, M.G.: Cross-projects software defect prediction using spotted hyena optimizer algorithm. SN Appl. Sci. 2(4), 1–15 (2020)CrossRef Elsabagh, M.A.; Farhan, M.S.; Gafar, M.G.: Cross-projects software defect prediction using spotted hyena optimizer algorithm. SN Appl. Sci. 2(4), 1–15 (2020)CrossRef
42.
go back to reference Panda, N.; Majhi, S.K.: How effective is spotted hyena optimizer for training multilayer Perceptrons. Int. J. Rec. Technol. Eng. 8, 4915–4927 (2019) Panda, N.; Majhi, S.K.: How effective is spotted hyena optimizer for training multilayer Perceptrons. Int. J. Rec. Technol. Eng. 8, 4915–4927 (2019)
43.
go back to reference Li, J., Luo, Q., Liao, L. and Zhou, Y.: Using spotted hyena optimizer for training feedforward neural networks. In: International Conference on Intelligent Computing, pp. 828–833. Springer, Cham Li, J., Luo, Q., Liao, L. and Zhou, Y.: Using spotted hyena optimizer for training feedforward neural networks. In: International Conference on Intelligent Computing, pp. 828–833. Springer, Cham
44.
go back to reference Kumar, V. and Kaur, A.: Binary spotted hyena optimizer and its application to feature selection. J. Ambient Intell. Hum. Comput. 1–21 (2019) Kumar, V. and Kaur, A.: Binary spotted hyena optimizer and its application to feature selection. J. Ambient Intell. Hum. Comput. 1–21 (2019)
45.
go back to reference Luo, Q.; Li, J.; Zhou, Y.: Spotted hyena optimizer with lateral inhibition for image matching. Multimed. Tools Appl. 78(24), 34277–34296 (2019)CrossRef Luo, Q.; Li, J.; Zhou, Y.: Spotted hyena optimizer with lateral inhibition for image matching. Multimed. Tools Appl. 78(24), 34277–34296 (2019)CrossRef
46.
go back to reference Divya, S.; Kiran, E.L.; Rao, M.S.; Vemulapati, P.: Prediction of gene selection features using improved multi-objective spotted hyena optimization algorithm. In: Data Communication and Networks, pp. 59–67. Springer, Singapore (2020)CrossRef Divya, S.; Kiran, E.L.; Rao, M.S.; Vemulapati, P.: Prediction of gene selection features using improved multi-objective spotted hyena optimization algorithm. In: Data Communication and Networks, pp. 59–67. Springer, Singapore (2020)CrossRef
47.
go back to reference Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G.: Darts game optimizer: a new optimization technique based on darts game. Int. J. Intell. Eng. Syst 13(5), 286–294 (2020) Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G.: Darts game optimizer: a new optimization technique based on darts game. Int. J. Intell. Eng. Syst 13(5), 286–294 (2020)
48.
go back to reference Dehghani, M.; Montazeri, Z.; Malik, O.P.; Dhiman, G.; Kumar, V.: BOSA: binary orientation search algorithm. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9, 5306–5310 (2019)CrossRef Dehghani, M.; Montazeri, Z.; Malik, O.P.; Dhiman, G.; Kumar, V.: BOSA: binary orientation search algorithm. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9, 5306–5310 (2019)CrossRef
49.
go back to reference Chatterjee, I.: Artificial intelligence and patentability: review and discussions. Int. J. Mod. Res. 1(1), 15–21 (2021) Chatterjee, I.: Artificial intelligence and patentability: review and discussions. Int. J. Mod. Res. 1(1), 15–21 (2021)
50.
go back to reference Kumar, R.; Dhiman, G.: A comparative study of fuzzy optimization through fuzzy number. Int. J. Mod. Res. 1(1), 1–14 (2021) Kumar, R.; Dhiman, G.: A comparative study of fuzzy optimization through fuzzy number. Int. J. Mod. Res. 1(1), 1–14 (2021)
51.
go back to reference Vaishnav, P.K.; Sharma, S.; Sharma, P.: Analytical review analysis for screening COVID-19 disease. Int. J. Mod. Res. 1(1), 22–29 (2021) Vaishnav, P.K.; Sharma, S.; Sharma, P.: Analytical review analysis for screening COVID-19 disease. Int. J. Mod. Res. 1(1), 22–29 (2021)
52.
go back to reference Dhiman, G.; Kaur, A.: STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019)CrossRef Dhiman, G.; Kaur, A.: STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019)CrossRef
53.
go back to reference Dhiman, G.; Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 159, 20–50 (2018)CrossRef Dhiman, G.; Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 159, 20–50 (2018)CrossRef
54.
go back to reference Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K.: BEPO: a novel binary emperor penguin optimizer for automatic feature selection. Knowl.-Based Syst. 211, 106560 (2021)CrossRef Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K.: BEPO: a novel binary emperor penguin optimizer for automatic feature selection. Knowl.-Based Syst. 211, 106560 (2021)CrossRef
55.
go back to reference Dhiman, G.; Kumar, V.: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)CrossRef Dhiman, G.; Kumar, V.: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)CrossRef
56.
go back to reference Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M.: A novel algorithm for global optimization: rat swarm optimizer. J. Ambient. Intell. Hum. Comput. 12(8), 8457–8482 (2021)CrossRef Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M.: A novel algorithm for global optimization: rat swarm optimizer. J. Ambient. Intell. Hum. Comput. 12(8), 8457–8482 (2021)CrossRef
57.
go back to reference Dhiman, G.: ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 37(1), 323–353 (2021)CrossRef Dhiman, G.: ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 37(1), 323–353 (2021)CrossRef
58.
go back to reference Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.P.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L.: A spring search algorithm applied to engineering optimization problems. Appl. Sci. 10(18), 6173 (2020)CrossRef Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.P.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L.: A spring search algorithm applied to engineering optimization problems. Appl. Sci. 10(18), 6173 (2020)CrossRef
59.
go back to reference Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)CrossRef Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)CrossRef
60.
go back to reference Wu, G., Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. In: National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report (2017) Wu, G., Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. In: National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report (2017)
61.
go back to reference Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRef Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRef
62.
go back to reference Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)CrossRef Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)CrossRef
63.
go back to reference Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef
64.
65.
go back to reference Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)MATHCrossRef Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)MATHCrossRef
66.
go back to reference Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetMATHCrossRef Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetMATHCrossRef
69.
go back to reference Grossmann, A.; Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetMATHCrossRef Grossmann, A.; Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetMATHCrossRef
70.
go back to reference Zhang, Q.; Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw. 3(6), 889–898 (1992)CrossRef Zhang, Q.; Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw. 3(6), 889–898 (1992)CrossRef
71.
go back to reference Alexandridis, A.K.; Zapranis, A.D.: Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013)MATHCrossRef Alexandridis, A.K.; Zapranis, A.D.: Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013)MATHCrossRef
72.
go back to reference Wang, G., Guo, L. and Duan, H.: Wavelet neural network using multiple wavelet functions in target threat assessment. Sci. World J. (2013) Wang, G., Guo, L. and Duan, H.: Wavelet neural network using multiple wavelet functions in target threat assessment. Sci. World J. (2013)
73.
go back to reference Panda, N., Majhi, S.K., Singh, S., Khanna, A.: Oppositional spotted hyena optimizer with mutation operator for global optimization and application in training wavelet neural network. J. Intell. Fuzzy Syst. (Preprint) 1–14 (2020) Panda, N., Majhi, S.K., Singh, S., Khanna, A.: Oppositional spotted hyena optimizer with mutation operator for global optimization and application in training wavelet neural network. J. Intell. Fuzzy Syst. (Preprint) 1–14 (2020)
Metadata
Title
A Hybrid Approach of Spotted Hyena Optimization Integrated with Quadratic Approximation for Training Wavelet Neural Network
Authors
Nibedan Panda
Santosh Kumar Majhi
Rosy Pradhan
Publication date
01-02-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-06564-4

Other articles of this Issue 8/2022

Arabian Journal for Science and Engineering 8/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

Arabic Handwritten Recognition Using Deep Learning: A Survey

Research Article-Computer Engineering and Computer Science

UnCNN: A New Directed CNN Model for Isolated Arabic Handwritten Characters Recognition

Research Article-Computer Engineering and Computer Science

C-COVIDNet: A CNN Model for COVID-19 Detection Using Image Processing

Premium Partners