Skip to main content
Top
Published in: Neural Computing and Applications 7/2019

30-08-2017 | Original Article

A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls

Authors: Jagdev Singh, M. M. Rashidi, Sushila, Devendra Kumar

Published in: Neural Computing and Applications | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The key goal of this article is to present an efficient hybrid computational technique, namely homotopy analysis transform method (HATM), to investigate Jeffery–Hamel flow. The HATM is an innovative and efficient amalgamation of homotopy analysis technique, standard Laplace transform scheme and homotopy polynomials. The effect of Reynolds number on velocity profile is studied graphically. The obtained results are compared with existing results and it is noticed that the outcomes are in an excellent agreement. The outcomes of the suggested method reveal that the technique is easy to handle and computationally very fantastic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jeffery GB (1995) The two-dimensional steady motion of a viscous fluid. Philos Mag 6:455–465MATH Jeffery GB (1995) The two-dimensional steady motion of a viscous fluid. Philos Mag 6:455–465MATH
2.
go back to reference Hamel G (1916) Spiralformige Bewgungen, Zaher Flussigkeiten. Jahresbericht der Deutschen. Math Vereinigung 25:34–60MATH Hamel G (1916) Spiralformige Bewgungen, Zaher Flussigkeiten. Jahresbericht der Deutschen. Math Vereinigung 25:34–60MATH
3.
go back to reference Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc A 175:436–467MATHCrossRef Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc A 175:436–467MATHCrossRef
4.
go back to reference Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
5.
go back to reference White FM (1991) Viscous fluid flow. McGraw-Hill, New York White FM (1991) Viscous fluid flow. McGraw-Hill, New York
6.
go back to reference Hamadiche M, Scott J, Jeandel D (1994) Temporal stability of Jeffery–Hamel flow. J Fluid Mech 268:71–88MATHCrossRef Hamadiche M, Scott J, Jeandel D (1994) Temporal stability of Jeffery–Hamel flow. J Fluid Mech 268:71–88MATHCrossRef
7.
go back to reference Fraenkel LE (1962) Laminar flow in symmetrical channels with slightly curved walls. I: on the Jeffery–Hamel solution for flow between plane walls. Proc R Soc A 267:119–138MathSciNetMATHCrossRef Fraenkel LE (1962) Laminar flow in symmetrical channels with slightly curved walls. I: on the Jeffery–Hamel solution for flow between plane walls. Proc R Soc A 267:119–138MathSciNetMATHCrossRef
8.
go back to reference Makinde OD, Mhone PY (2006) Hermite-Pade’ approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972MATH Makinde OD, Mhone PY (2006) Hermite-Pade’ approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972MATH
9.
go back to reference Joneidi AA, Domairry G, Babaelahi M (2010) Three analytical methods applied to Jeffery–Hamel flow. Commun Nonlinear Sci Numer Simul 15:3423–3434MATHCrossRef Joneidi AA, Domairry G, Babaelahi M (2010) Three analytical methods applied to Jeffery–Hamel flow. Commun Nonlinear Sci Numer Simul 15:3423–3434MATHCrossRef
10.
go back to reference Esmali Q, Ramiar A, Alizadeh E, Ganji DD (2008) An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys Lett A 372:3434–3439MATHCrossRef Esmali Q, Ramiar A, Alizadeh E, Ganji DD (2008) An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys Lett A 372:3434–3439MATHCrossRef
11.
go back to reference Inc M, Akgül A, Kilicman A (2013) A new application of the reproducing kernel Hilbert space method to solve MHD Jeffery–Hamel flows problems in nonparallel walls. Abstr Appl Anal Article ID 239454, 12 pp Inc M, Akgül A, Kilicman A (2013) A new application of the reproducing kernel Hilbert space method to solve MHD Jeffery–Hamel flows problems in nonparallel walls. Abstr Appl Anal Article ID 239454, 12 pp
12.
go back to reference Azimi M, Azimi A (2013) Study on effect of semi-angle between non-parallel walls on magneto hydro dynamic Jeffery Hamel flow using semi-analytical approach. J Chem Eng Mater Sci 4(5):67–71CrossRef Azimi M, Azimi A (2013) Study on effect of semi-angle between non-parallel walls on magneto hydro dynamic Jeffery Hamel flow using semi-analytical approach. J Chem Eng Mater Sci 4(5):67–71CrossRef
13.
go back to reference Sheikholeslami M, Mollabasi H, Ganji DD (2015) Analytical investigation of MHD Jeffery–Hamel nanofluid flow in non-parallel walls. Int J Nanosci Nanotechnol 11(4):241–248 Sheikholeslami M, Mollabasi H, Ganji DD (2015) Analytical investigation of MHD Jeffery–Hamel nanofluid flow in non-parallel walls. Int J Nanosci Nanotechnol 11(4):241–248
14.
go back to reference Sushila, Singh J, Shishodia YS (2014) A modified analytical technique for Jeffery–Hamel flow using sumudu transform. J Assoc Arab Univ Basic Appl Sci 16:11–15 Sushila, Singh J, Shishodia YS (2014) A modified analytical technique for Jeffery–Hamel flow using sumudu transform. J Assoc Arab Univ Basic Appl Sci 16:11–15
15.
go back to reference Sheikholeslami M, Shehzad SA (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269CrossRef Sheikholeslami M, Shehzad SA (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269CrossRef
16.
go back to reference Sheikholeslami M, Shehzad SA (2017) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92CrossRef Sheikholeslami M, Shehzad SA (2017) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92CrossRef
17.
go back to reference Rauf A, Shehzad SA, Hayat T, Meraj MA, Alsaedi A (2017) MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions. Bull Pol Acad Sci 65:155–162 Rauf A, Shehzad SA, Hayat T, Meraj MA, Alsaedi A (2017) MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions. Bull Pol Acad Sci 65:155–162
19.
go back to reference Bilal Ashraf M, Hayat T, Shehzad SA, Ahmed B (2017) Thermophoresis and MHD mixed convection three-dimensional flow of viscoelastic fluid with Soret and Dufour effects. Neural Comput Appl. doi:10.1007/s00521-017-2997-5 CrossRef Bilal Ashraf M, Hayat T, Shehzad SA, Ahmed B (2017) Thermophoresis and MHD mixed convection three-dimensional flow of viscoelastic fluid with Soret and Dufour effects. Neural Comput Appl. doi:10.​1007/​s00521-017-2997-5 CrossRef
21.
go back to reference Bulut H, Baskonus HM (2010) A study on the numerical solution of the third-order dispersive equation with homotopy perturbation method. e-J New World Sci Acad 5(1):18–30 Bulut H, Baskonus HM (2010) A study on the numerical solution of the third-order dispersive equation with homotopy perturbation method. e-J New World Sci Acad 5(1):18–30
22.
go back to reference Bulut H, Baskonus HM (2010) Numerical solution study on KDV, the Burgers and the K(2,2) equations with HPM. J Adv Res Differ Equ 2(1):73–86 Bulut H, Baskonus HM (2010) Numerical solution study on KDV, the Burgers and the K(2,2) equations with HPM. J Adv Res Differ Equ 2(1):73–86
23.
go back to reference Bulut H, Baskonus HM (2010) Numerical solution study on the nonlinear damped generalized regularized long-wave (DGRLW) with homotopy perturbation method. Appl Math Sci 4(65):3211–3217MathSciNetMATH Bulut H, Baskonus HM (2010) Numerical solution study on the nonlinear damped generalized regularized long-wave (DGRLW) with homotopy perturbation method. Appl Math Sci 4(65):3211–3217MathSciNetMATH
24.
go back to reference Singh J, Kumar D, Swroop R (2016) Numerical solution of time- and space-fractional coupled Burgers equations via homotopy algorithm. Alexandria Eng J 55(2):1753–1763CrossRef Singh J, Kumar D, Swroop R (2016) Numerical solution of time- and space-fractional coupled Burgers equations via homotopy algorithm. Alexandria Eng J 55(2):1753–1763CrossRef
26.
go back to reference Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. CRC Press, Boca RatonCrossRef Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. CRC Press, Boca RatonCrossRef
27.
go back to reference Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513MathSciNetMATH Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513MathSciNetMATH
28.
go back to reference Liao SJ (2005) A new branch of solutions of boundary-layer flows over an impermeable stretched plane. Int J Heat Mass Transf 48(12):2529–2539MATHCrossRef Liao SJ (2005) A new branch of solutions of boundary-layer flows over an impermeable stretched plane. Int J Heat Mass Transf 48(12):2529–2539MATHCrossRef
29.
go back to reference Rashidi MM, Rastegar MT, Asadi M, Anwar Bég O (2012) A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chem Eng Commun 199:231–256CrossRef Rashidi MM, Rastegar MT, Asadi M, Anwar Bég O (2012) A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chem Eng Commun 199:231–256CrossRef
30.
go back to reference Rashidi MM, Hassan H (2014) An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. Int J Numer Methods Heat Fluid Flow 24(2):419–437MathSciNetMATHCrossRef Rashidi MM, Hassan H (2014) An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. Int J Numer Methods Heat Fluid Flow 24(2):419–437MathSciNetMATHCrossRef
31.
go back to reference Basiri Parsa A, Rashidi MM, Anwar Bég O, Sadri SM (2013) Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol Med 43(9):1142–1153CrossRef Basiri Parsa A, Rashidi MM, Anwar Bég O, Sadri SM (2013) Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol Med 43(9):1142–1153CrossRef
32.
go back to reference Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM (2014) Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol 267:256–267CrossRef Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM (2014) Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol 267:256–267CrossRef
33.
go back to reference Rashidi MM, Bagheric S, Momoniatd E, Freidoonimehre N (2017) Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng J 8:77–85CrossRef Rashidi MM, Bagheric S, Momoniatd E, Freidoonimehre N (2017) Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng J 8:77–85CrossRef
34.
go back to reference Rashidi MM, Rostami B, Freidoonimehr N, Abbasbandy S (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5(3):901–912CrossRef Rashidi MM, Rostami B, Freidoonimehr N, Abbasbandy S (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5(3):901–912CrossRef
35.
go back to reference Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters. J Appl Math Article ID 780415,19 pp Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters. J Appl Math Article ID 780415,19 pp
36.
go back to reference Sheikh M, Abbas Z (2015) Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J Magn Magn Mater 396(15):204–213CrossRef Sheikh M, Abbas Z (2015) Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J Magn Magn Mater 396(15):204–213CrossRef
37.
go back to reference Hayat T, Nisar Z, Ahmad B, Yasmin H (2015) Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J Magn Magn Mater 395(1):48–58 Hayat T, Nisar Z, Ahmad B, Yasmin H (2015) Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J Magn Magn Mater 395(1):48–58
38.
go back to reference Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Magn Magn Mater 396(15):31–37CrossRef Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Magn Magn Mater 396(15):31–37CrossRef
39.
go back to reference Mehmood R, Nadeem S, Masood S (2016) Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. Magn Magn Mater 401(1):1006–1014CrossRef Mehmood R, Nadeem S, Masood S (2016) Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. Magn Magn Mater 401(1):1006–1014CrossRef
40.
go back to reference Kumar S, Rashidi MM (2014) New analytical method for gas dynamics equation arising in shock fronts. Comput Phys Commun 185(7):1947–1954MathSciNetMATHCrossRef Kumar S, Rashidi MM (2014) New analytical method for gas dynamics equation arising in shock fronts. Comput Phys Commun 185(7):1947–1954MathSciNetMATHCrossRef
41.
go back to reference Kumar D, Singh J, Kumar S, Sushila, Singh BP (2015) Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng 6(2):605–611CrossRef Kumar D, Singh J, Kumar S, Sushila, Singh BP (2015) Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng 6(2):605–611CrossRef
42.
go back to reference Kumar D, Singh J, Kumar S, Sushila (2014) Numerical computation of Klein–Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alexandria Eng J 53(2):469–474CrossRef Kumar D, Singh J, Kumar S, Sushila (2014) Numerical computation of Klein–Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alexandria Eng J 53(2):469–474CrossRef
43.
go back to reference Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Gang B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liquids 198:234–238CrossRef Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Gang B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liquids 198:234–238CrossRef
44.
go back to reference Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci 87:136–145CrossRef Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci 87:136–145CrossRef
45.
go back to reference Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi infinite domain. Math Comput Model 55:1143–1150MathSciNetMATHCrossRef Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi infinite domain. Math Comput Model 55:1143–1150MathSciNetMATHCrossRef
46.
go back to reference Salah A, Khan M, Gondal MA (2013) A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput Appl 23(2):269–271CrossRef Salah A, Khan M, Gondal MA (2013) A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput Appl 23(2):269–271CrossRef
47.
go back to reference Kumar D, Singh J, Kumar S (2015) Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform. Commun Numer Anal 1:16–29MathSciNetCrossRef Kumar D, Singh J, Kumar S (2015) Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform. Commun Numer Anal 1:16–29MathSciNetCrossRef
48.
go back to reference Ramswroop SJ, Kumar D (2015) Numerical computation of fractional Lotka–Volterra equation arising in biological systems. Nonlinear Eng 4(2):117–125CrossRef Ramswroop SJ, Kumar D (2015) Numerical computation of fractional Lotka–Volterra equation arising in biological systems. Nonlinear Eng 4(2):117–125CrossRef
49.
go back to reference Odibat Z, Bataineh SA (2014) An adaptation of homotopy analysis method for reliable 337 treatment of strongly nonlinear problems: construction of homotopy polynomials. Math Methods Appl Sci. doi:10.1002/mma.3136 MATHCrossRef Odibat Z, Bataineh SA (2014) An adaptation of homotopy analysis method for reliable 337 treatment of strongly nonlinear problems: construction of homotopy polynomials. Math Methods Appl Sci. doi:10.​1002/​mma.​3136 MATHCrossRef
Metadata
Title
A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls
Authors
Jagdev Singh
M. M. Rashidi
Sushila
Devendra Kumar
Publication date
30-08-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3198-y

Other articles of this Issue 7/2019

Neural Computing and Applications 7/2019 Go to the issue

Theory and Applications of Soft Computing Methods

Attraction and diffusion in nature-inspired optimization algorithms

Premium Partner