Skip to main content
Top
Published in: Journal of Scientific Computing 1/2018

28-04-2018

A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation

Author: Georgios E. Zouraris

Published in: Journal of Scientific Computing | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete \(H^1\)-norm is proved, assuming that \(\tau \), h and \(\tfrac{\tau ^4}{h}\) are sufficiently small, where \(\tau \) is the time-step and h is the space mesh-size. The convergence analysis is based on the investigation of a modified version of the proposed finite difference method, which is innovative and handles the stability difficulties due to the presence of a nonlinear derivative term in the equation. The efficiency of the proposed finite difference method is verified by results from numerical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achilleos, V., Diamantidis, S., Frantzeskakis, D.J., Karachalios, N.I., Kevrekidis, P.G.: Conservation laws, exact traveling waves and modulation instability for an extended nonlinear Schrödinger equation. J. Phys. A Math. Theor. 48, 355205–355237 (2015)CrossRefMATH Achilleos, V., Diamantidis, S., Frantzeskakis, D.J., Karachalios, N.I., Kevrekidis, P.G.: Conservation laws, exact traveling waves and modulation instability for an extended nonlinear Schrödinger equation. J. Phys. A Math. Theor. 48, 355205–355237 (2015)CrossRefMATH
2.
3.
go back to reference Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetCrossRefMATH Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetCrossRefMATH
4.
go back to reference Al-Harbi, W.: Numerical solution of Hirota Equation. Master Thesis, Department of Mathematics, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia (2009) Al-Harbi, W.: Numerical solution of Hirota Equation. Master Thesis, Department of Mathematics, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia (2009)
5.
go back to reference Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRef Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRef
6.
go back to reference Besse, C.: Schéma de relaxation pour l’ équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I 326, 1427–1432 (1998) Besse, C.: Schéma de relaxation pour l’ équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I 326, 1427–1432 (1998)
7.
go back to reference Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Jhan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44, 2265–2269 (2012)CrossRef Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Jhan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44, 2265–2269 (2012)CrossRef
8.
go back to reference Chiao, R.Y., Garmire, E., Townes, C.H.: Self-Trapping of Optical Beams. Phys. Rev. Lett. 13, 479–482 (1964); Erratum, 14, 1056 (1965) Chiao, R.Y., Garmire, E., Townes, C.H.: Self-Trapping of Optical Beams. Phys. Rev. Lett. 13, 479–482 (1964); Erratum, 14, 1056 (1965)
9.
go back to reference Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrodinger equations with derivative. SIAM J. Math. Anal. 33, 649–669 (2001)MathSciNetCrossRefMATH Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrodinger equations with derivative. SIAM J. Math. Anal. 33, 649–669 (2001)MathSciNetCrossRefMATH
10.
go back to reference Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH
11.
go back to reference Demontis, F., Ortenzi, G., van der Mee, C.: Exact solutions of the Hirota equation and vortex filaments motion. Physica D 313, 61–80 (2015)MathSciNetCrossRefMATH Demontis, F., Ortenzi, G., van der Mee, C.: Exact solutions of the Hirota equation and vortex filaments motion. Physica D 313, 61–80 (2015)MathSciNetCrossRefMATH
12.
go back to reference Fei, Z., Pérez-García, V.M., Váquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH Fei, Z., Pérez-García, V.M., Váquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH
13.
go back to reference Fukumoto, Y., Miyazaki, T.: N-solitons on a curved vortex filament, with axial flow. J. Phys. Soc. Jpn. 55, 3365–3370 (1988)MathSciNet Fukumoto, Y., Miyazaki, T.: N-solitons on a curved vortex filament, with axial flow. J. Phys. Soc. Jpn. 55, 3365–3370 (1988)MathSciNet
14.
go back to reference Fukumoto, Y., Miyazaki, T.: Three-dimensional distortions of a vortex filament with axial velocity. J. Fluid Mech. 222, 369–416 (1991)MathSciNetCrossRefMATH Fukumoto, Y., Miyazaki, T.: Three-dimensional distortions of a vortex filament with axial velocity. J. Fluid Mech. 222, 369–416 (1991)MathSciNetCrossRefMATH
15.
go back to reference Hasewaga, A., Kodama, Y.: Solitons in Optical Communications, Oxford Series in Optical and Imaging Sciences, vol. 7. Claredon Press, Wotton-under-Edge (1995) Hasewaga, A., Kodama, Y.: Solitons in Optical Communications, Oxford Series in Optical and Imaging Sciences, vol. 7. Claredon Press, Wotton-under-Edge (1995)
16.
go back to reference Hasewaga, A., Matsumoto, A.: Optical Solitons in Fibers. Springer Series in Photonics. Springer, Berlin (2003)CrossRef Hasewaga, A., Matsumoto, A.: Optical Solitons in Fibers. Springer Series in Photonics. Springer, Berlin (2003)CrossRef
18.
go back to reference Karakashian, O., Akrivis, G.D., Dougalis, V.A.: On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30, 377–400 (1993)MathSciNetCrossRefMATH Karakashian, O., Akrivis, G.D., Dougalis, V.A.: On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30, 377–400 (1993)MathSciNetCrossRefMATH
19.
go back to reference Karakashian, O., Makridakis, Ch.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67, 479–499 (1998)CrossRefMATH Karakashian, O., Makridakis, Ch.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67, 479–499 (1998)CrossRefMATH
20.
go back to reference Lamb, G.L.: Elements of Soliton Theory. Wiley, Claredon Press, Wotton-under-Edge (1980)MATH Lamb, G.L.: Elements of Soliton Theory. Wiley, Claredon Press, Wotton-under-Edge (1980)MATH
21.
go back to reference Raslan, K.R., El-Danaf, T.S., Ali, K.: Collocation method with quintic \(B-\)spline method for solving the Hirota equation. J. Abstr. Comput. Math. 1, 1–12 (2016) Raslan, K.R., El-Danaf, T.S., Ali, K.: Collocation method with quintic \(B-\)spline method for solving the Hirota equation. J. Abstr. Comput. Math. 1, 1–12 (2016)
22.
go back to reference Robinson, M.P., Fairweather, G.: Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68, 355–376 (1994)MathSciNetCrossRefMATH Robinson, M.P., Fairweather, G.: Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68, 355–376 (1994)MathSciNetCrossRefMATH
23.
24.
go back to reference Sulem, P.L., Sulem, C., Patera, A.: Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation. Commun. Pure Appl. Math. 37, 755–778 (1984)CrossRefMATH Sulem, P.L., Sulem, C., Patera, A.: Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation. Commun. Pure Appl. Math. 37, 755–778 (1984)CrossRefMATH
25.
26.
go back to reference Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)MathSciNetCrossRefMATH Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)MathSciNetCrossRefMATH
27.
go back to reference Uddin, M., Haq, S., Siraj-ul-Islam.: Numerical solution of complex modified Korteweg-de Vries equation by mesh-free collocation method. Comput. Math. Appl. 58, 566–578 (2009) Uddin, M., Haq, S., Siraj-ul-Islam.: Numerical solution of complex modified Korteweg-de Vries equation by mesh-free collocation method. Comput. Math. Appl. 58, 566–578 (2009)
28.
go back to reference Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)MathSciNetCrossRefMATH Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)MathSciNetCrossRefMATH
30.
go back to reference Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Math. Model. Numer. Anal. 35, 389–405 (2001)MathSciNetCrossRefMATH Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Math. Model. Numer. Anal. 35, 389–405 (2001)MathSciNetCrossRefMATH
Metadata
Title
A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation
Author
Georgios E. Zouraris
Publication date
28-04-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0718-6

Other articles of this Issue 1/2018

Journal of Scientific Computing 1/2018 Go to the issue

Premium Partner