Skip to main content
Top
Published in: Journal of Scientific Computing 1/2018

26-04-2018

A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators

Authors: Fanhai Zeng, Ian Turner, Kevin Burrage

Published in: Journal of Scientific Computing | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A unified fast time-stepping method for both fractional integral and derivative operators is proposed. The fractional operator is decomposed into a local part with memory length \(\varDelta T\) and a history part, where the local part is approximated by the direct convolution method and the history part is approximated by a fast memory-saving method. The fast method has \(O(n_0+\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) active memory and \(O(n_0n_T+ (n_T-n_0)\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) operations, where \(L=\log (n_T-n_0)\), \(n_0={\varDelta T}/\tau ,n_T=T/\tau \), \(\tau \) is the stepsize, T is the final time, and \({q}_{\alpha }{(N_{\ell })}\) is the number of quadrature points used in the truncated Laguerre–Gauss (LG) quadrature. The error bound of the present fast method is analyzed. It is shown that the error from the truncated LG quadrature is independent of the stepsize, and can be made arbitrarily small by choosing suitable parameters that are given explicitly. Numerical examples are presented to verify the effectiveness of the current fast method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)MathSciNetMATHCrossRef Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)MathSciNetMATHCrossRef
2.
go back to reference Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)MathSciNetMATHCrossRef Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)MathSciNetMATHCrossRef
3.
go back to reference Banjai, L., López-Fernández, M., Schädle, A.: Fast and oblivious algorithms for dissipative and two-dimensional wave equations. SIAM J. Numer. Anal. 55(2), 621–639 (2017)MathSciNetMATHCrossRef Banjai, L., López-Fernández, M., Schädle, A.: Fast and oblivious algorithms for dissipative and two-dimensional wave equations. SIAM J. Numer. Anal. 55(2), 621–639 (2017)MathSciNetMATHCrossRef
5.
go back to reference D’Amore, L., Murli, A., Rizzardi, M.: An extension of the Henrici formula for Laplace transform inversion. Inverse Probl. 16(5), 1441–1456 (2000)MathSciNetMATHCrossRef D’Amore, L., Murli, A., Rizzardi, M.: An extension of the Henrici formula for Laplace transform inversion. Inverse Probl. 16(5), 1441–1456 (2000)MathSciNetMATHCrossRef
6.
go back to reference Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)MathSciNetMATHCrossRef Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)MathSciNetMATHCrossRef
7.
8.
9.
go back to reference Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)MathSciNetMATHCrossRef Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)MathSciNetMATHCrossRef
10.
go back to reference Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)MathSciNetMATHCrossRef Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)MathSciNetMATHCrossRef
12.
go back to reference Gatteschi, L.: Asymptotics and bounds for the zeros of laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1), 7–27 (2002)MathSciNetMATHCrossRef Gatteschi, L.: Asymptotics and bounds for the zeros of laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1), 7–27 (2002)MathSciNetMATHCrossRef
13.
go back to reference Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64(10), 3377–3388 (2012)MathSciNetMATHCrossRef Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64(10), 3377–3388 (2012)MathSciNetMATHCrossRef
14.
go back to reference Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)MathSciNetCrossRef Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)MathSciNetCrossRef
15.
go back to reference Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH
16.
go back to reference Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetMATHCrossRef Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetMATHCrossRef
17.
go back to reference Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2015) Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2015)
18.
19.
go back to reference Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71(2), 785–803 (2017)MathSciNetMATHCrossRef Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71(2), 785–803 (2017)MathSciNetMATHCrossRef
20.
go back to reference López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)MathSciNetMATHCrossRef López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)MathSciNetMATHCrossRef
22.
23.
go back to reference Luchko, Y.: Initial-boundary problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)MathSciNetMATHCrossRef Luchko, Y.: Initial-boundary problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)MathSciNetMATHCrossRef
24.
go back to reference Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)MathSciNetMATHCrossRef Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)MathSciNetMATHCrossRef
25.
go back to reference Mastroianni, G., Monegato, G.: Truncated quadrature rules over \((0,\infty )\) and Nyström-type methods. SIAM J. Numer. Anal. 41, 1870–1892 (2006)MATH Mastroianni, G., Monegato, G.: Truncated quadrature rules over \((0,\infty )\) and Nyström-type methods. SIAM J. Numer. Anal. 41, 1870–1892 (2006)MATH
26.
go back to reference Mastroianni, G., Monegato, G.: Some new applications of truncated Gauss–Laguerre quadrature formulas. Numer. Algorithms 49, 283–297 (2008)MathSciNetMATHCrossRef Mastroianni, G., Monegato, G.: Some new applications of truncated Gauss–Laguerre quadrature formulas. Numer. Algorithms 49, 283–297 (2008)MathSciNetMATHCrossRef
27.
go back to reference McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34(6), A3039–A3056 (2012)MathSciNetMATHCrossRef McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34(6), A3039–A3056 (2012)MathSciNetMATHCrossRef
29.
go back to reference McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)MathSciNetMATHCrossRef McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)MathSciNetMATHCrossRef
30.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)MathSciNetMATHCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)MathSciNetMATHCrossRef
31.
go back to reference Podlubny, I.: Fractional differential equations. Academic Press Inc, San Diego (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press Inc, San Diego (1999)MATH
32.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH
33.
go back to reference Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)MathSciNetMATHCrossRef Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)MathSciNetMATHCrossRef
34.
go back to reference Shen, J., Tang, T., Wang, L.L.: Spectral Methods, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011) Shen, J., Tang, T., Wang, L.L.: Spectral Methods, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011)
35.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)MathSciNetMATHCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)MathSciNetMATHCrossRef
36.
37.
go back to reference Wang, C.L., Wang, Z.Q., Jia, H.L.: An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels. J. Sci. Comput. 72, 647–678 (2017)MathSciNetMATHCrossRef Wang, C.L., Wang, Z.Q., Jia, H.L.: An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels. J. Sci. Comput. 72, 647–678 (2017)MathSciNetMATHCrossRef
38.
39.
go back to reference Weideman, J.A.C.: Optimizing talbots contours for the inversion of the laplace transform. SIAM J. Numer. Anal. 44(6), 2342–2362 (2006)MathSciNetMATHCrossRef Weideman, J.A.C.: Optimizing talbots contours for the inversion of the laplace transform. SIAM J. Numer. Anal. 44(6), 2342–2362 (2006)MathSciNetMATHCrossRef
40.
go back to reference Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)MathSciNetMATHCrossRef Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)MathSciNetMATHCrossRef
41.
go back to reference Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393(2), 434–444 (2012)MathSciNetMATHCrossRef Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393(2), 434–444 (2012)MathSciNetMATHCrossRef
42.
go back to reference Yan, Y., Sun, Z.Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)MathSciNetCrossRef Yan, Y., Sun, Z.Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)MathSciNetCrossRef
43.
go back to reference Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016)MathSciNetCrossRef Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016)MathSciNetCrossRef
44.
go back to reference Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)MathSciNetMATHCrossRef Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)MathSciNetMATHCrossRef
45.
go back to reference Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetMATHCrossRef Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetMATHCrossRef
46.
go back to reference Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)MathSciNetCrossRef
Metadata
Title
A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators
Authors
Fanhai Zeng
Ian Turner
Kevin Burrage
Publication date
26-04-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0707-9

Other articles of this Issue 1/2018

Journal of Scientific Computing 1/2018 Go to the issue

Premium Partner