Skip to main content
Top
Published in: Engineering with Computers 4/2020

30-04-2019 | Original Article

A meshless multiple-scale polynomial method for numerical solution of 3D convection–diffusion problems with variable coefficients

Author: Ömer Oruç

Published in: Engineering with Computers | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper numerical solution of 3D convection–diffusion problems both with high Reynolds (Re) numbers and variable coefficients are investigated via a meshless method based on polynomial basis. It is well known that using polynomial basis directly for solving partial differential equations may be unsafe due to ill-conditioned resultant coefficients matrix that formed after discretization process. Therefore to get rid of highly ill-conditioned coefficient matrix we took advantage of multiple-scale method which is essentially based on the idea of equating norm of each column of resultant coefficients matrix. Through this approach we can reduce the condition number greatly. The proposed method is a truly meshless method since there is no need for meshing or any node connectivity and implementation of the method is simple and straightforward. The performance of the proposed method is measured by four test problems in both regular and irregular computational domains. Numerical results corroborate efficiency of meshless multiple-scale polynomial method for 3D convection–diffusion problems as well show its stability in case of large noise effect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang J (1998) An explicit fourth-order compact finite difference scheme for three dimensional convection-diffusion equation. Commun Numer Meth Eng 14:263–280MathSciNet Zhang J (1998) An explicit fourth-order compact finite difference scheme for three dimensional convection-diffusion equation. Commun Numer Meth Eng 14:263–280MathSciNet
2.
go back to reference Roache P (1972) Computational fluid dynamics. Hermosa Press, AlbuquerqueMATH Roache P (1972) Computational fluid dynamics. Hermosa Press, AlbuquerqueMATH
3.
go back to reference Gupta MM, Zhang J (2000) High accuracy multigrid solution of the 3D convection diffusion equation. Appl Math Comput 113:249–274MathSciNetMATH Gupta MM, Zhang J (2000) High accuracy multigrid solution of the 3D convection diffusion equation. Appl Math Comput 113:249–274MathSciNetMATH
4.
go back to reference Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150:5–19MathSciNetMATH Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150:5–19MathSciNetMATH
5.
go back to reference Dehghan M, Mohebbi A (2008) High-order compact boundary value method for the solution of unsteady convection–diffusion problems. Math Comput Simul 79:683–699MathSciNetMATH Dehghan M, Mohebbi A (2008) High-order compact boundary value method for the solution of unsteady convection–diffusion problems. Math Comput Simul 79:683–699MathSciNetMATH
6.
go back to reference Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30MathSciNetMATH Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30MathSciNetMATH
7.
go back to reference Oruç Ö (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25MathSciNet Oruç Ö (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25MathSciNet
8.
go back to reference Oruç Ö, Bulut F, Esen A (2015) A haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers’ equation. J Math Chem 53(7):1592–1607MathSciNetMATH Oruç Ö, Bulut F, Esen A (2015) A haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers’ equation. J Math Chem 53(7):1592–1607MathSciNetMATH
9.
go back to reference Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89(1):173–188 Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89(1):173–188
10.
go back to reference Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835MathSciNetMATH Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835MathSciNetMATH
11.
go back to reference Shivanian E, Jafarabadi A (2018) Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod Phys Lett B 32(22):1850251MathSciNet Shivanian E, Jafarabadi A (2018) Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod Phys Lett B 32(22):1850251MathSciNet
12.
go back to reference Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12MathSciNetMATH Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12MathSciNetMATH
13.
go back to reference Fatahi H, Saberi-Nadjafi J, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209MathSciNetMATH Fatahi H, Saberi-Nadjafi J, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209MathSciNetMATH
14.
go back to reference Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5/6):791–805MATH Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5/6):791–805MATH
15.
go back to reference Dehghan M (2005) Quasi-implicit and two-level explicit finite-difference procedures for solving the one-dimensional advection equation. Appl Math Comput 167(1):46–67MathSciNetMATH Dehghan M (2005) Quasi-implicit and two-level explicit finite-difference procedures for solving the one-dimensional advection equation. Appl Math Comput 167(1):46–67MathSciNetMATH
16.
go back to reference Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH
17.
go back to reference Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 147(2):307–319MathSciNetMATH Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 147(2):307–319MathSciNetMATH
18.
go back to reference Dehghan M (2005) On the numerical solution of the one-dimensional convection-diffusion equation. Math probl eng 1:61–74MATH Dehghan M (2005) On the numerical solution of the one-dimensional convection-diffusion equation. Math probl eng 1:61–74MATH
19.
go back to reference Wang C, He M, Sun P (2016) A new combined finite element-upwind finite volume method for convection-dominated diffusion problems. Numer Methods Partial Differ Equ 32:799–818MathSciNetMATH Wang C, He M, Sun P (2016) A new combined finite element-upwind finite volume method for convection-dominated diffusion problems. Numer Methods Partial Differ Equ 32:799–818MathSciNetMATH
22.
go back to reference Safdari-Vaighani A, Heryudono A, Larsson E (2015) A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. J Sci Comput 64(2):341–367MathSciNetMATH Safdari-Vaighani A, Heryudono A, Larsson E (2015) A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. J Sci Comput 64(2):341–367MathSciNetMATH
23.
go back to reference Ge YB, Tian ZF, Zhang J (2013) An exponential high-order compact ADI method for 3d unsteady convection–diffusion problems. Numer Methods Partial Differ Equ 29:186–205MathSciNetMATH Ge YB, Tian ZF, Zhang J (2013) An exponential high-order compact ADI method for 3d unsteady convection–diffusion problems. Numer Methods Partial Differ Equ 29:186–205MathSciNetMATH
24.
go back to reference Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients. Int J Numer Methods Fluids 38:1111–1131MathSciNetMATH Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients. Int J Numer Methods Fluids 38:1111–1131MathSciNetMATH
25.
go back to reference Tian ZF, Dai SQ (2007) High-order compact exponential finite difference methods for convection–diffusion type problems. J Comput Phys 220:952–974MathSciNetMATH Tian ZF, Dai SQ (2007) High-order compact exponential finite difference methods for convection–diffusion type problems. J Comput Phys 220:952–974MathSciNetMATH
26.
go back to reference Tian ZF, Yu PX (2011) A high-order exponential scheme for solving 1D unsteady convection–diffusion equations. J Comput Appl Math 235:2477–2491MathSciNetMATH Tian ZF, Yu PX (2011) A high-order exponential scheme for solving 1D unsteady convection–diffusion equations. J Comput Appl Math 235:2477–2491MathSciNetMATH
27.
go back to reference Ma Y, Ge Y (2010) A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl Math Comput 215:3408–3417MathSciNetMATH Ma Y, Ge Y (2010) A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl Math Comput 215:3408–3417MathSciNetMATH
28.
go back to reference Dai R, Wang Y, Zhang J (2013) Fast and high accuracy multiscale multigrid method with multiple coarse grid updating strategy for the 3D convection–diffusion equation. Comput Math Appl 66:542–559MathSciNetMATH Dai R, Wang Y, Zhang J (2013) Fast and high accuracy multiscale multigrid method with multiple coarse grid updating strategy for the 3D convection–diffusion equation. Comput Math Appl 66:542–559MathSciNetMATH
29.
go back to reference Wang K, Wang H (2018) Stability and error estimates of a new high-order compact ADI method for the unsteady 3D convection–diffusion equation. Appl Math Comput 331:140–159MathSciNetMATH Wang K, Wang H (2018) Stability and error estimates of a new high-order compact ADI method for the unsteady 3D convection–diffusion equation. Appl Math Comput 331:140–159MathSciNetMATH
30.
go back to reference Liu GR, Liu MB, Li S (2004) Smoothed particle hydrodynamics: a mesh free method. Comput Mech 33(6):491–491 Liu GR, Liu MB, Li S (2004) Smoothed particle hydrodynamics: a mesh free method. Comput Mech 33(6):491–491
31.
go back to reference Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNetMATH Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNetMATH
32.
go back to reference Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Application to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866MathSciNetMATH Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Application to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866MathSciNetMATH
33.
go back to reference Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124 Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124
34.
go back to reference Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37(12):1693–1702MathSciNetMATH Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37(12):1693–1702MathSciNetMATH
35.
go back to reference Shivanian E (2015) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257MathSciNetMATH Shivanian E (2015) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257MathSciNetMATH
36.
go back to reference Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110MathSciNetMATH Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110MathSciNetMATH
38.
go back to reference Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19(8/9):147–61MathSciNetMATH Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19(8/9):147–61MathSciNetMATH
40.
go back to reference Hu HY, Li ZC, Cheng AH-D (2005) Radial basis collocation methods for elliptic boundary value problems. Comput Math Appl 50:289–320MathSciNetMATH Hu HY, Li ZC, Cheng AH-D (2005) Radial basis collocation methods for elliptic boundary value problems. Comput Math Appl 50:289–320MathSciNetMATH
42.
go back to reference Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146MathSciNetMATH Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146MathSciNetMATH
43.
go back to reference Dehghan M, Mohammadi V (2014) The numerical solution of Fokker-Planck equation with radial basis functions (RBFs) based on the meshless technique of Kansa’s approach and Galerkin method. Eng Anal Bound Elem 47:38–63MathSciNetMATH Dehghan M, Mohammadi V (2014) The numerical solution of Fokker-Planck equation with radial basis functions (RBFs) based on the meshless technique of Kansa’s approach and Galerkin method. Eng Anal Bound Elem 47:38–63MathSciNetMATH
44.
go back to reference Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH
45.
go back to reference Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput Math Appl 68:212–237MathSciNetMATH Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput Math Appl 68:212–237MathSciNetMATH
47.
go back to reference Lin J, Chen CS, Wang F, Dangal T (2017) Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl Math Model 49:452–469MathSciNetMATH Lin J, Chen CS, Wang F, Dangal T (2017) Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl Math Model 49:452–469MathSciNetMATH
48.
go back to reference Li X, Dangal T, Lei B (2018) Localized method of approximate particular solutions with polynomial basis functions. Eng Anal Bound Elem 97:16–22MathSciNetMATH Li X, Dangal T, Lei B (2018) Localized method of approximate particular solutions with polynomial basis functions. Eng Anal Bound Elem 97:16–22MathSciNetMATH
49.
go back to reference Liu GR, Gu YT (2003) A meshfree method: meshfree weak strong (MWS) form method, for 2-D solids. Comput Mech 33:2–14MATH Liu GR, Gu YT (2003) A meshfree method: meshfree weak strong (MWS) form method, for 2-D solids. Comput Mech 33:2–14MATH
50.
go back to reference Liu GR, Wu YL, Ding H (2004) Meshfree weak strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46(10):1025–1047MathSciNetMATH Liu GR, Wu YL, Ding H (2004) Meshfree weak strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46(10):1025–1047MathSciNetMATH
51.
go back to reference Gu YT, Liu GR (2005) A meshfree weak-strong (MWS) form method for time dependent problems. Comput Mech 35:134–145MATH Gu YT, Liu GR (2005) A meshfree weak-strong (MWS) form method for time dependent problems. Comput Mech 35:134–145MATH
52.
go back to reference Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34(4):324–336MathSciNetMATH Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34(4):324–336MathSciNetMATH
53.
go back to reference Dehghan M, Abbaszadeh M, Mohebbi A (2015) The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J Comput Appl Math 286:211–231MathSciNetMATH Dehghan M, Abbaszadeh M, Mohebbi A (2015) The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J Comput Appl Math 286:211–231MathSciNetMATH
54.
go back to reference Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Eng Anal Bound Elem 36:310–321MathSciNetMATH Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Eng Anal Bound Elem 36:310–321MathSciNetMATH
56.
go back to reference Liu CS, Kuo CL (2016) A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems. Eng Anal Bound Elem 62:35–43MathSciNetMATH Liu CS, Kuo CL (2016) A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems. Eng Anal Bound Elem 62:35–43MathSciNetMATH
57.
go back to reference Liu CS, Young DL (2016) A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems. J Comput Phys 312:1–13MathSciNetMATH Liu CS, Young DL (2016) A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems. J Comput Phys 312:1–13MathSciNetMATH
58.
go back to reference Chang CW (2016) A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain. Eng Anal Bound Elem 70:56–71MathSciNetMATH Chang CW (2016) A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain. Eng Anal Bound Elem 70:56–71MathSciNetMATH
59.
go back to reference Liu G, Ma W, Ma H, Zhu L (2018) A multiple-scale higher order polynomial collocation method for 2D and 3D elliptic partial differential equations with variable coefficients. Appl Math Comput 331:430–444MathSciNetMATH Liu G, Ma W, Ma H, Zhu L (2018) A multiple-scale higher order polynomial collocation method for 2D and 3D elliptic partial differential equations with variable coefficients. Appl Math Comput 331:430–444MathSciNetMATH
60.
go back to reference Wang M, Watson D, Li M (2018) The method of particular solutions with polynomial basis functions for solving axisymmetric problems. Eng Anal Bound Elem 90:39–46MathSciNetMATH Wang M, Watson D, Li M (2018) The method of particular solutions with polynomial basis functions for solving axisymmetric problems. Eng Anal Bound Elem 90:39–46MathSciNetMATH
62.
go back to reference Liu CS, Wang F, Qu W (2018) Fast solving the cauchy problems of poisson equation in an arbitrary three-dimensional domain. CMES-Comp Model Eng 114(3):351–380 Liu CS, Wang F, Qu W (2018) Fast solving the cauchy problems of poisson equation in an arbitrary three-dimensional domain. CMES-Comp Model Eng 114(3):351–380
63.
go back to reference Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52MATH Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52MATH
64.
go back to reference Logg A, Wells GN (2010) DOLFIN: automated finite element computing. ACM Trans Math Softw 37(2):1–28MathSciNetMATH Logg A, Wells GN (2010) DOLFIN: automated finite element computing. ACM Trans Math Softw 37(2):1–28MathSciNetMATH
65.
go back to reference Oliphant Travis E (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20 Oliphant Travis E (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20
66.
go back to reference Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103. https://doi.org/10.7717/peerj-cs.103CrossRef Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103. https://​doi.​org/​10.​7717/​peerj-cs.​103CrossRef
67.
go back to reference van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30 van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30
68.
go back to reference Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95
70.
go back to reference Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. In: Visualization handbook. Elsevier, ISBN-13: 978-0123875822 Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. In: Visualization handbook. Elsevier, ISBN-13: 978-0123875822
Metadata
Title
A meshless multiple-scale polynomial method for numerical solution of 3D convection–diffusion problems with variable coefficients
Author
Ömer Oruç
Publication date
30-04-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00758-5

Other articles of this Issue 4/2020

Engineering with Computers 4/2020 Go to the issue