Skip to main content
Top
Published in: Computational Mechanics 1/2024

13-06-2023 | Original Paper

A mixed-order interpolation solid element for efficient arterial wall simulations

Authors: L. A. Mansilla Alvarez, G. D. Ares, R. A. Feijóo, P. J. Blanco

Published in: Computational Mechanics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical strategy tailored to model the mechanical equilibrium in vascular vessels is presented. The formulation, based on a specific arrangement of finite elements, exploits the shell-like structure of the vessel wall by proposing a mixed-order approximation of the displacement field. The fields across the thickness are represented by a single element with high order polynomial approximation while the in-plane components are described through low-order 2D polynomials. The formulation is versatile to accommodate any kind of hyperelastic constitutive material model undergoing large strains. A series of numerical examples is presented to validate the effectiveness of the proposed approach. These examples range from benchmark problems reported in the literature to applications in the domain of cardiovascular modeling. The proposed approach proved to be effective and efficient in simulating the mechanics of vascular vessels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arif Yurdagul J, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295CrossRef Arif Yurdagul J, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295CrossRef
2.
go back to reference Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling. J Biomech 41(5):1111–1118CrossRef Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling. J Biomech 41(5):1111–1118CrossRef
3.
go back to reference Gao H, Long Q, Kumar Das S, Halls J, Graves M, Gillard JH, Li Z-Y (2011) Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. J Biomech 44(14):2551–2557CrossRef Gao H, Long Q, Kumar Das S, Halls J, Graves M, Gillard JH, Li Z-Y (2011) Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. J Biomech 44(14):2551–2557CrossRef
4.
go back to reference Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Yong Kim W (2008) Mechanical stresses in carotid plaques using mri-based fluid-structure interaction models. J Biomech 41(8):1651–1658CrossRef Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Yong Kim W (2008) Mechanical stresses in carotid plaques using mri-based fluid-structure interaction models. J Biomech 41(8):1651–1658CrossRef
5.
go back to reference Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20CrossRef Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20CrossRef
6.
go back to reference Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng [H] 227(2):148–161CrossRef Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng [H] 227(2):148–161CrossRef
7.
go back to reference Li Z-Y, Howarth SPS, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37(5):1195–1199CrossRef Li Z-Y, Howarth SPS, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37(5):1195–1199CrossRef
8.
go back to reference Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. BioMed Eng Online 8 Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. BioMed Eng Online 8
9.
go back to reference Vengrenyuk Y, Kaplan TJ, Cardoso L, Randolph GJ, Weinbaum S (2010) Computational stress analysis of atherosclerotic plaques in apoe knockout mice. Ann Biomed Eng 38(3):738–747CrossRef Vengrenyuk Y, Kaplan TJ, Cardoso L, Randolph GJ, Weinbaum S (2010) Computational stress analysis of atherosclerotic plaques in apoe knockout mice. Ann Biomed Eng 38(3):738–747CrossRef
10.
go back to reference Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V (2016) Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations: comparison with in vivo data in an aortic dissection. Front Physiol 7(JUN) Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V (2016) Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations: comparison with in vivo data in an aortic dissection. Front Physiol 7(JUN)
11.
go back to reference Gasser TC, Holzapfel GA (2007) Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng 35(5):711–723CrossRef Gasser TC, Holzapfel GA (2007) Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng 35(5):711–723CrossRef
12.
go back to reference Holzapfel GA (2009) Arterial tissue in health and disease: experimental data, collagen-based modeling and simulation, including aortic dissection. CISM Int Centre Mech Sci Courses Lect 508:259–344MathSciNetCrossRef Holzapfel GA (2009) Arterial tissue in health and disease: experimental data, collagen-based modeling and simulation, including aortic dissection. CISM Int Centre Mech Sci Courses Lect 508:259–344MathSciNetCrossRef
13.
go back to reference Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23(9):647–655CrossRef Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23(9):647–655CrossRef
14.
go back to reference Humphrey JD, Canham PB (2000) Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elast 61(1–3):49–81CrossRef Humphrey JD, Canham PB (2000) Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elast 61(1–3):49–81CrossRef
15.
go back to reference Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R (1993) Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg 7(6):667–674CrossRef Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R (1993) Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg 7(6):667–674CrossRef
16.
go back to reference Badel P, Avril S, Sutton MA, Lessner SM (2014) Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries. J Biomech 47(4):878–889CrossRef Badel P, Avril S, Sutton MA, Lessner SM (2014) Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries. J Biomech 47(4):878–889CrossRef
17.
go back to reference Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180CrossRef Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180CrossRef
18.
go back to reference Kiousis DE, Gasser TC, Holzapfel GA (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng 35(11):1857–1869CrossRef Kiousis DE, Gasser TC, Holzapfel GA (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng 35(11):1857–1869CrossRef
19.
go back to reference Li Z, Kleinstreuer C (2005) Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys 27(5):369–382CrossRef Li Z, Kleinstreuer C (2005) Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys 27(5):369–382CrossRef
20.
go back to reference Migliavacca F, Petrini L, Massarotti P, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2(4):205–217CrossRef Migliavacca F, Petrini L, Massarotti P, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2(4):205–217CrossRef
21.
go back to reference Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466(2118):1551–1597MathSciNet Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466(2118):1551–1597MathSciNet
22.
go back to reference Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics
23.
go back to reference Brands D, Klawonn A, Rheinbach O, Schröder J (2008) Modelling and convergence in arterial wall simulations using a parallel feti solution strategy. Comput Methods Biomech Biomed Engin 11(5):569–583CrossRef Brands D, Klawonn A, Rheinbach O, Schröder J (2008) Modelling and convergence in arterial wall simulations using a parallel feti solution strategy. Comput Methods Biomech Biomed Engin 11(5):569–583CrossRef
24.
go back to reference de Souza Neto E, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296MathSciNetCrossRef de Souza Neto E, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296MathSciNetCrossRef
25.
go back to reference Simo JC (1998) Numerical analysis and simulation of plasticity. Handb Numer Anal 6:183–499MathSciNet Simo JC (1998) Numerical analysis and simulation of plasticity. Handb Numer Anal 6:183–499MathSciNet
26.
go back to reference Chiumenti M, Valverde Q, Agelet De Saracibar C, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191(46):5253–5264MathSciNetCrossRef Chiumenti M, Valverde Q, Agelet De Saracibar C, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191(46):5253–5264MathSciNetCrossRef
27.
go back to reference Lee CH, Gil AJ, Bonet J (2014) Development of a stabilised petrov-galerkin formulation for conservation laws in lagrangian fast solid dynamics. Comput Methods Appl Mech Eng 268:40–64MathSciNetCrossRef Lee CH, Gil AJ, Bonet J (2014) Development of a stabilised petrov-galerkin formulation for conservation laws in lagrangian fast solid dynamics. Comput Methods Appl Mech Eng 268:40–64MathSciNetCrossRef
28.
go back to reference Oñate E, Idelsohn SR, Felippa CA (2011) Consistent pressure laplacian stabilization for incompressible continua via higher-order finite calculus. Int J Numer Meth Eng 87(1–5):171–195MathSciNetCrossRef Oñate E, Idelsohn SR, Felippa CA (2011) Consistent pressure laplacian stabilization for incompressible continua via higher-order finite calculus. Int J Numer Meth Eng 87(1–5):171–195MathSciNetCrossRef
29.
go back to reference Liu J, Marsden AL, Tao Z (2019) An energy-stable mixed formulation for isogeometric analysis of incompressible hyperelastodynamics. Int J Numer Meth Eng 120(8):937–963MathSciNetCrossRef Liu J, Marsden AL, Tao Z (2019) An energy-stable mixed formulation for isogeometric analysis of incompressible hyperelastodynamics. Int J Numer Meth Eng 120(8):937–963MathSciNetCrossRef
30.
go back to reference Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput Methods Appl Mech Eng 196(31–32):3070–3078MathSciNetCrossRef Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput Methods Appl Mech Eng 196(31–32):3070–3078MathSciNetCrossRef
31.
go back to reference Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706MathSciNetCrossRef Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706MathSciNetCrossRef
32.
go back to reference Taroco EO, Blanco PJ, Feijóo RA (2020) Introduction to the variational formulation in mechanics: fundamentals and applications Taroco EO, Blanco PJ, Feijóo RA (2020) Introduction to the variational formulation in mechanics: fundamentals and applications
33.
go back to reference Nama N, Aguirre M, Humphrey JD, Figueroa CA (2020) A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Sci Rep 10(1) Nama N, Aguirre M, Humphrey JD, Figueroa CA (2020) A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Sci Rep 10(1)
34.
go back to reference Braeu F, Seitz A, Aydin R, Cyron C (2017) Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 16(3):889–906CrossRef Braeu F, Seitz A, Aydin R, Cyron C (2017) Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 16(3):889–906CrossRef
35.
go back to reference Laubrie JD, Mousavi JS, Avril S (2020) A new finite-element shell model for arterial growth and remodeling after stent implantation. Int J Numer Methods Biomed Eng 36(1) Laubrie JD, Mousavi JS, Avril S (2020) A new finite-element shell model for arterial growth and remodeling after stent implantation. Int J Numer Methods Biomed Eng 36(1)
37.
go back to reference Sepahi O, Radtke L, Debus SE, Düster A (2017) Anisotropic hierarchic solid finite elements for the simulation of passive-active arterial wall models. Comput Math Appl 74(12):3058–3079MathSciNetCrossRef Sepahi O, Radtke L, Debus SE, Düster A (2017) Anisotropic hierarchic solid finite elements for the simulation of passive-active arterial wall models. Comput Math Appl 74(12):3058–3079MathSciNetCrossRef
38.
go back to reference Blanco PJ, Ares GD, Urquiza SA, Feijóo RA (2016) On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach. Biomech Model Mechanobiol 15(3):593–627CrossRef Blanco PJ, Ares GD, Urquiza SA, Feijóo RA (2016) On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach. Biomech Model Mechanobiol 15(3):593–627CrossRef
39.
go back to reference Urquiza SA, Blanco PJ, Ares GD, Feijóo RA (2012) Implementation issues of large strain formulations of hyperelastic materials for the modeling of arterial wall mechanics. Scientific Comput Appl Med Healthcare 79 Urquiza SA, Blanco PJ, Ares GD, Feijóo RA (2012) Implementation issues of large strain formulations of hyperelastic materials for the modeling of arterial wall mechanics. Scientific Comput Appl Med Healthcare 79
40.
41.
go back to reference Crisfield M (1997) Non-linear finite element analysis of solids and structures: advanced topics. Wiley Crisfield M (1997) Non-linear finite element analysis of solids and structures: advanced topics. Wiley
42.
go back to reference Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures
43.
go back to reference Stein E, Olavi Rüter M (2018) Finite element methods for elasticity with error-controlled discretization and model adaptivity. Encyclopedia Comput Mech Second Ed:1–96 Stein E, Olavi Rüter M (2018) Finite element methods for elasticity with error-controlled discretization and model adaptivity. Encyclopedia Comput Mech Second Ed:1–96
44.
go back to reference Delfino A, Stergiopulos N, Moore J Jr, Meister J-J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786CrossRef Delfino A, Stergiopulos N, Moore J Jr, Meister J-J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786CrossRef
45.
go back to reference Hariton I, Debotton G, Gasser T, Holzapfel G (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3):460–470MathSciNetCrossRef Hariton I, Debotton G, Gasser T, Holzapfel G (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3):460–470MathSciNetCrossRef
46.
go back to reference Rhodin JA (1980) Architecture of the vessel wall. Vascular smooth muscle:1–31 Rhodin JA (1980) Architecture of the vessel wall. Vascular smooth muscle:1–31
47.
go back to reference Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48MathSciNet Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48MathSciNet
48.
go back to reference Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23(1):61–68CrossRef Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23(1):61–68CrossRef
49.
go back to reference Chuong C, Fung Y (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1):35–40CrossRef Chuong C, Fung Y (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1):35–40CrossRef
50.
go back to reference Fung Y (1990) Motion, flow, stress and growth, Biomechanics. Springer Fung Y (1990) Motion, flow, stress and growth, Biomechanics. Springer
51.
go back to reference Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21CrossRef Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21CrossRef
52.
go back to reference Frenzel M (2009) Advanced structural finite element modeling of arterial walls for patient-specific geometries. PhD thesis, Technische Universität München Frenzel M (2009) Advanced structural finite element modeling of arterial walls for patient-specific geometries. PhD thesis, Technische Universität München
53.
go back to reference Mansilla Alvarez L, Bulant C, Ares G, Feijóo R, Blanco P (2022) A mid-fidelity numerical method for blood flow in deformable vessels. Comput Methods Appl Mech Eng 392:114654MathSciNetCrossRef Mansilla Alvarez L, Bulant C, Ares G, Feijóo R, Blanco P (2022) A mid-fidelity numerical method for blood flow in deformable vessels. Comput Methods Appl Mech Eng 392:114654MathSciNetCrossRef
54.
go back to reference Korelc J, Šolinc U, Wriggers P (2010) An improved eas brick element for finite deformation. Comput Mech 46(4):641–659CrossRef Korelc J, Šolinc U, Wriggers P (2010) An improved eas brick element for finite deformation. Comput Mech 46(4):641–659CrossRef
55.
go back to reference Schröder J, Wick T, Reese S, Wriggers P, Müller R, Kollmannsberger S, Kästner M, Schwarz A, Igelbüscher M, Viebahn N et al (2021) A selection of benchmark problems in solid mechanics and applied mathematics. Arch Comput Methods Eng 28(2):713–751MathSciNetCrossRef Schröder J, Wick T, Reese S, Wriggers P, Müller R, Kollmannsberger S, Kästner M, Schwarz A, Igelbüscher M, Viebahn N et al (2021) A selection of benchmark problems in solid mechanics and applied mathematics. Arch Comput Methods Eng 28(2):713–751MathSciNetCrossRef
56.
go back to reference Reese S, Wriggers P, Reddy B (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75(3):291–304MathSciNetCrossRef Reese S, Wriggers P, Reddy B (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75(3):291–304MathSciNetCrossRef
57.
go back to reference Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37(15):2551–2568CrossRef Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37(15):2551–2568CrossRef
58.
go back to reference Merlini T, Morandini M (2005) The helicoidal modeling in computational finite elasticity. Part iii: finite element approximation for non-polar media. Int J Solids Struct 42(24–25):6475–6513CrossRef Merlini T, Morandini M (2005) The helicoidal modeling in computational finite elasticity. Part iii: finite element approximation for non-polar media. Int J Solids Struct 42(24–25):6475–6513CrossRef
59.
go back to reference Chavan KS, Lamichhane BP, Wohlmuth BI (2007) Locking-free finite element methods for linear and nonlinear elasticity in 2d and 3d. Comput Methods Appl Mech Eng 196(41–44):4075–4086CrossRef Chavan KS, Lamichhane BP, Wohlmuth BI (2007) Locking-free finite element methods for linear and nonlinear elasticity in 2d and 3d. Comput Methods Appl Mech Eng 196(41–44):4075–4086CrossRef
60.
go back to reference Arbind A, Reddy JN (2021) A general higher-order shell theory for compressible isotropic hyperelastic materials using orthonormal moving frame. Int J Numer Meth Eng 122(1):235–269MathSciNetCrossRef Arbind A, Reddy JN (2021) A general higher-order shell theory for compressible isotropic hyperelastic materials using orthonormal moving frame. Int J Numer Meth Eng 122(1):235–269MathSciNetCrossRef
61.
go back to reference Mansilla Alvarez LA, Blanco PJ, Bulant CA, Dari E, Veneziani A, Feijóo RA (2017) Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int J Num Meth Biomed Eng 33(4) Mansilla Alvarez LA, Blanco PJ, Bulant CA, Dari E, Veneziani A, Feijóo RA (2017) Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int J Num Meth Biomed Eng 33(4)
62.
go back to reference Mansilla Alvarez LA, Blanco PJ, Bulant CA, Feijóo RA (2019) Towards fast hemodynamic simulations in large-scale circulatory networks. Comput Methods Appl Mech Eng 344:734–765MathSciNetCrossRef Mansilla Alvarez LA, Blanco PJ, Bulant CA, Feijóo RA (2019) Towards fast hemodynamic simulations in large-scale circulatory networks. Comput Methods Appl Mech Eng 344:734–765MathSciNetCrossRef
63.
go back to reference Hariton I, Gasser T, Holzapfel G, Hamza M, Debotton G (2005) How to incorporate collagen fibers orientations in an arterial bifurcation. In: Proceedings of the Third IASTED international conference on biomechanics, pp 101–104 Hariton I, Gasser T, Holzapfel G, Hamza M, Debotton G (2005) How to incorporate collagen fibers orientations in an arterial bifurcation. In: Proceedings of the Third IASTED international conference on biomechanics, pp 101–104
Metadata
Title
A mixed-order interpolation solid element for efficient arterial wall simulations
Authors
L. A. Mansilla Alvarez
G. D. Ares
R. A. Feijóo
P. J. Blanco
Publication date
13-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2024
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02356-1

Other articles of this Issue 1/2024

Computational Mechanics 1/2024 Go to the issue