Skip to main content
Top
Published in: Computational Mechanics 1/2024

28-06-2023 | Original Paper

Space–time collocation meshfree method for modeling 3D wave propagation problems

Authors: Zhentian Huang, Dong Lei, Zi Han, Heping Xie, Jianbo Zhu

Published in: Computational Mechanics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a novel local space–time domain collocation technique—space–time boundary moving least squares (BMLS–ST) method, which has been proposed for modeling 3D propagation problems in the 4D spatiotemporal domain. The transient wave equations are approximated by four 1D boundary shape functions on the X-, Y-, Z-, and T-axis within the BMLS–ST implementation. Specifically, due to the local approximation feature of the moving least square in 1D shape functions, the BMLS–ST results in a large-scale sparse linear system that is easy to store and solve. In addition, based on the boundary moving least square 3D spatial approximation, we introduce the Newmark implicit integration scheme to develop the boundary moving least square Newmark approximation formula (BMLS–NM). The identical spatial discretization scheme is adopted in the two methods proposed here, with different temporal approximations. The numerical results demonstrate that the BMLS–ST is of a high order of accuracy, easy to carry out, and utilizes large time steps for modeling transient 3D wave propagation problems. This work provides a numerical basis for further research on the dynamic analysis of discontinuous the arch dam model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Khodakarami MI, Khaji N, Ahmadi MT (2012) Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Comput Methods Appl Mech Eng 213–216:183–195MathSciNetCrossRef Khodakarami MI, Khaji N, Ahmadi MT (2012) Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Comput Methods Appl Mech Eng 213–216:183–195MathSciNetCrossRef
2.
go back to reference Kim KT, Bathe KJ (2021) Accurate solution of wave propagation problems in elasticity. Comput Struct 249:1–12CrossRef Kim KT, Bathe KJ (2021) Accurate solution of wave propagation problems in elasticity. Comput Struct 249:1–12CrossRef
3.
go back to reference Yang ZJ, Deeks AJ (2007) A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput Mech 40:725–738CrossRef Yang ZJ, Deeks AJ (2007) A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput Mech 40:725–738CrossRef
4.
go back to reference Kan LW, Jun S, Zhang YF (1995a) Reproducing kernel particle methods. Int J Numer Methods Fluid 20(8–9):1081–1106MathSciNetCrossRef Kan LW, Jun S, Zhang YF (1995a) Reproducing kernel particle methods. Int J Numer Methods Fluid 20(8–9):1081–1106MathSciNetCrossRef
5.
go back to reference Liu WK, Jun S, Li SF, Adee J, Belytschko T (1995b) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRef Liu WK, Jun S, Li SF, Adee J, Belytschko T (1995b) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRef
6.
go back to reference Chen SS, Wang W, Zhao XS (2019) An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis. Appl Math Model 75:494–505MathSciNetCrossRef Chen SS, Wang W, Zhao XS (2019) An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis. Appl Math Model 75:494–505MathSciNetCrossRef
7.
go back to reference Izadpanah E, Shojaee S, Hamzehei-Javaran S (2017) A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework. Acta Mech 229:4977–4994MathSciNetCrossRef Izadpanah E, Shojaee S, Hamzehei-Javaran S (2017) A time-dependent discontinuous Galerkin finite element approach in two-dimensional elastodynamic problems based on spherical Hankel element framework. Acta Mech 229:4977–4994MathSciNetCrossRef
8.
go back to reference Hejranfar K, Parseh K (2015) Numerical simulation of structural dynamics using a high-order compact finite-difference scheme. Appl Math Model 000:1–23 Hejranfar K, Parseh K (2015) Numerical simulation of structural dynamics using a high-order compact finite-difference scheme. Appl Math Model 000:1–23
9.
go back to reference Liu XF, Wang H, Yu XL, Wang CJ (2021) A Krylov-based proper orthogonal decomposition method for elastodynamics problems with isogeometric analysis. Eng Anal Bound Elem 133:71–83MathSciNetCrossRef Liu XF, Wang H, Yu XL, Wang CJ (2021) A Krylov-based proper orthogonal decomposition method for elastodynamics problems with isogeometric analysis. Eng Anal Bound Elem 133:71–83MathSciNetCrossRef
10.
go back to reference Dineva PS, Manolis GD, Wuttke F (2019) Fundamental solutions in 3D elastodynamics for the BEM: a review. Eng Anal Bound Elem 105:47–69MathSciNetCrossRef Dineva PS, Manolis GD, Wuttke F (2019) Fundamental solutions in 3D elastodynamics for the BEM: a review. Eng Anal Bound Elem 105:47–69MathSciNetCrossRef
11.
go back to reference Qin SP, Wei GF, Liu Z, Su GS (2021) The elastic dynamics analysis of FGM using a meshless RRKPM. Eng Anal Bound Elem 129:125–136MathSciNetCrossRef Qin SP, Wei GF, Liu Z, Su GS (2021) The elastic dynamics analysis of FGM using a meshless RRKPM. Eng Anal Bound Elem 129:125–136MathSciNetCrossRef
12.
go back to reference Noh G, Bathe K-J (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:1–12CrossRef Noh G, Bathe K-J (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:1–12CrossRef
13.
go back to reference Bathe KJ, Wilson EL (1973) Stability and accuracy analysis of direct integration methods. Earthq Eng Struct D 1:283–291CrossRef Bathe KJ, Wilson EL (1973) Stability and accuracy analysis of direct integration methods. Earthq Eng Struct D 1:283–291CrossRef
14.
go back to reference Marfurt KJ (1984) Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5):533–549CrossRef Marfurt KJ (1984) Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5):533–549CrossRef
15.
go back to reference Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) A posteriori error estimation for finite element solutions of Helmholtz’ equation. 2. Estimation of the pollution error. Int J Numer Methods Eng 40:3883–3900MathSciNetCrossRef Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) A posteriori error estimation for finite element solutions of Helmholtz’ equation. 2. Estimation of the pollution error. Int J Numer Methods Eng 40:3883–3900MathSciNetCrossRef
16.
go back to reference Boris JP, Book DL (1976) Flux-corrected transport. 3 Minimal-error FCT algorithms. J Comput Phys 20:397–431CrossRef Boris JP, Book DL (1976) Flux-corrected transport. 3 Minimal-error FCT algorithms. J Comput Phys 20:397–431CrossRef
17.
go back to reference Chin RCY (1975) Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations. J Comput Phys 18:233–247MathSciNetCrossRef Chin RCY (1975) Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations. J Comput Phys 18:233–247MathSciNetCrossRef
18.
go back to reference Deraemaeker A, Babuska I, Bouillard P (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int J Numer Methods Eng 46:471–499CrossRef Deraemaeker A, Babuska I, Bouillard P (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int J Numer Methods Eng 46:471–499CrossRef
19.
go back to reference Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105CrossRef Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105CrossRef
20.
go back to reference Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66(3):339–363MathSciNetCrossRef Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66(3):339–363MathSciNetCrossRef
21.
go back to reference Li XD, Wiberg NE (1996) Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Int J Numer Methods Eng 39(12):2131–2152MathSciNetCrossRef Li XD, Wiberg NE (1996) Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Int J Numer Methods Eng 39(12):2131–2152MathSciNetCrossRef
22.
go back to reference Yang Y, Chirputkar S, Alpert DN, Eason T et al (2012) Enriched space–time finite element method: a new paradigm for multiscaling from elastodynamics to molecular dynamics. Int J Numer Methods Eng 92:115–140MathSciNetCrossRef Yang Y, Chirputkar S, Alpert DN, Eason T et al (2012) Enriched space–time finite element method: a new paradigm for multiscaling from elastodynamics to molecular dynamics. Int J Numer Methods Eng 92:115–140MathSciNetCrossRef
23.
go back to reference Liew KM, Cheng YM (2009) Complex variable boundary element-free method for two-dimensional elastodynamic problems. Comput Methods Appl Mech Eng 198:3925–3933MathSciNetCrossRef Liew KM, Cheng YM (2009) Complex variable boundary element-free method for two-dimensional elastodynamic problems. Comput Methods Appl Mech Eng 198:3925–3933MathSciNetCrossRef
24.
go back to reference Sladek J, Sladek V, Van Keer R (2003) Meshless local boundary integral equation method for 2D elastodynamic problems. Int J Numer Methods Eng 57:235–249CrossRef Sladek J, Sladek V, Van Keer R (2003) Meshless local boundary integral equation method for 2D elastodynamic problems. Int J Numer Methods Eng 57:235–249CrossRef
25.
go back to reference Myers DE, Iaco SD, Posa D, Cesare LD (2002) Space-time radial basis functions. Comput Math Appl 43(3–5):539–549MathSciNetCrossRef Myers DE, Iaco SD, Posa D, Cesare LD (2002) Space-time radial basis functions. Comput Math Appl 43(3–5):539–549MathSciNetCrossRef
26.
go back to reference Young L, Tsai CC, Murugesan K, Fan CM, Chen C (2004) Time-dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Bound Elem 28:1463–1473CrossRef Young L, Tsai CC, Murugesan K, Fan CM, Chen C (2004) Time-dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Bound Elem 28:1463–1473CrossRef
27.
go back to reference Netuzhylov H (2008) A space–time meshfree collocation method for coupled problems on irregularly-shaped domains [Ph.D. thesis]. TU Braunschweig, CSE-Computational Sciences in Engineering Netuzhylov H (2008) A space–time meshfree collocation method for coupled problems on irregularly-shaped domains [Ph.D. thesis]. TU Braunschweig, CSE-Computational Sciences in Engineering
28.
go back to reference Lin J, Zhang YH, Reutskiy S, Feng WJ (2021) A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems. Appl Math Comput 398:125964MathSciNet Lin J, Zhang YH, Reutskiy S, Feng WJ (2021) A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems. Appl Math Comput 398:125964MathSciNet
29.
go back to reference Moosavi MR, Delfanian F, Khelil A, Rabczuk T (2011) Orthogonal meshless finite volume method in elastodynamics. Thin Wall Struc 49:1171–1177CrossRef Moosavi MR, Delfanian F, Khelil A, Rabczuk T (2011) Orthogonal meshless finite volume method in elastodynamics. Thin Wall Struc 49:1171–1177CrossRef
30.
go back to reference Huang ZT, Dong L, Han Z, Lin J (2020) Boundary moving least square method for 3D elasticity problems. Eng Anal Bound Elem 121:255–266MathSciNetCrossRef Huang ZT, Dong L, Han Z, Lin J (2020) Boundary moving least square method for 3D elasticity problems. Eng Anal Bound Elem 121:255–266MathSciNetCrossRef
31.
go back to reference Huang ZT, Lei D, Han Z, Zhang P (2019) Boundary moving least square method for numerical evaluation of two-dimensional elastic membrane and plate dynamics problems. Eng Anal Bound Elem 108:41–48MathSciNetCrossRef Huang ZT, Lei D, Han Z, Zhang P (2019) Boundary moving least square method for numerical evaluation of two-dimensional elastic membrane and plate dynamics problems. Eng Anal Bound Elem 108:41–48MathSciNetCrossRef
32.
go back to reference Huang ZT, Lei D, Huang DW, Lin J, Han Z (2019) Boundary moving least square method for 2D elasticity problems. Eng Anal Bound Elem 106:505–512MathSciNetCrossRef Huang ZT, Lei D, Huang DW, Lin J, Han Z (2019) Boundary moving least square method for 2D elasticity problems. Eng Anal Bound Elem 106:505–512MathSciNetCrossRef
33.
go back to reference Hamaidi M, Naji A, Charafi A (2016) Space–time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng Anal Bound Elem 67:152–163MathSciNetCrossRef Hamaidi M, Naji A, Charafi A (2016) Space–time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng Anal Bound Elem 67:152–163MathSciNetCrossRef
34.
go back to reference Zhang L, Lu Y, Tang SQ, Liu WK (2022) HiDeNN-TD: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetCrossRef Zhang L, Lu Y, Tang SQ, Liu WK (2022) HiDeNN-TD: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetCrossRef
35.
go back to reference Lei D, Huang ZT, Bai PX, Zhu FP (2017) Experimental research on impact damage of Xiaowan arch dam model by digital image correlation. Constr Build Mater 147:168–173CrossRef Lei D, Huang ZT, Bai PX, Zhu FP (2017) Experimental research on impact damage of Xiaowan arch dam model by digital image correlation. Constr Build Mater 147:168–173CrossRef
Metadata
Title
Space–time collocation meshfree method for modeling 3D wave propagation problems
Authors
Zhentian Huang
Dong Lei
Zi Han
Heping Xie
Jianbo Zhu
Publication date
28-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2024
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02357-0

Other articles of this Issue 1/2024

Computational Mechanics 1/2024 Go to the issue