Skip to main content
Top
Published in: Computational Mechanics 1/2024

30-06-2023 | Original Paper

A unifying finite strain modeling framework for anisotropic mixed-mode fracture in soft materials

Authors: D. Pranavi, P. Steinmann, A. Rajagopal

Published in: Computational Mechanics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Elastomers and composites made thereof have wide applications, e.g., in automobile, aerospace, and civil engineering. Predicting fracture in such materials is crucial for efficient design and optimum utilization. These materials are oftentimes hyperelastic and anisotropic in nature and in general subjected to mixed mode loading rather than merely pure modes. Soft biological tissues can also be considered anisotropic hyperelastic materials. Computational modeling helps in studying the role of different sources influencing mixed-mode fracture. A unifying thermodynamically consistent anisotropic phase field formulation for modeling the mixed-mode fracture of hyperelastic soft materials like elastomers, elastomeric fiber-reinforced composites, and soft biological tissues at finite strains is proposed and formulated. To model the mechanical response of anisotropic hyperelastic materials subjected to mixed-mode loading, a coupled Neo-Hookean model with orthotropic anisotropy is adopted considering volumetric-deviatoric and a tension-compression decomposition. For modeling the complex crack initiation and propagation, a phase field method based on a power law criterion is adopted by considering a single order parameter as the damage variable. This model is suitable for capturing the overall response of soft fiber-reinforced elastomeric composites as well as soft biological tissues. The proposed model is validated by conducting fracture tests on (a) silicone elastomers, (b) unidirectional fiber-reinforced elastomeric composites, (c) natural rubber reinforced with black carbon, and (d) brain tissue reinforced with axons. The results obtained are compared with experimental and numerical investigations from literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hossain M, Steinmann P (2013) More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J Mech Behav Mater 22:27–50CrossRef Hossain M, Steinmann P (2013) More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J Mech Behav Mater 22:27–50CrossRef
2.
go back to reference Brigadnov IA, Dorfmann A (2003) Mathematical modeling of magneto-sensitive elastomers. Int J Solids Struct 40:4659–4674CrossRef Brigadnov IA, Dorfmann A (2003) Mathematical modeling of magneto-sensitive elastomers. Int J Solids Struct 40:4659–4674CrossRef
3.
go back to reference Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Testing 27:995–1004CrossRef Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Testing 27:995–1004CrossRef
4.
go back to reference Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRef Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRef
5.
go back to reference Pranavi D, Rajagopal A, Reddy JN (2021) Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites. Compos Struct 270:114038CrossRef Pranavi D, Rajagopal A, Reddy JN (2021) Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites. Compos Struct 270:114038CrossRef
6.
go back to reference Rajagopal A, Kraus M, Steinmann P (2018) Hyperelastic analysis based on a polygonal finite element method. Mech Adv Mater Struct 25:930–942CrossRef Rajagopal A, Kraus M, Steinmann P (2018) Hyperelastic analysis based on a polygonal finite element method. Mech Adv Mater Struct 25:930–942CrossRef
7.
go back to reference Mandal TK, Nguyen VP, Wu JY (2020) A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. Int J Mech Sci 188:105941CrossRef Mandal TK, Nguyen VP, Wu JY (2020) A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. Int J Mech Sci 188:105941CrossRef
8.
go back to reference Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113MathSciNetCrossRef Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113MathSciNetCrossRef
9.
go back to reference Yin B, Kaliske M (2020) An anisotropic phase-field model based on the equivalent crack surface energy density at finite strain. Comput Methods Appl Mech Eng 369:113202MathSciNetCrossRef Yin B, Kaliske M (2020) An anisotropic phase-field model based on the equivalent crack surface energy density at finite strain. Comput Methods Appl Mech Eng 369:113202MathSciNetCrossRef
10.
go back to reference Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523CrossRef Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523CrossRef
11.
go back to reference Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNetCrossRef Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNetCrossRef
12.
go back to reference Tang S, Zhang G, Guo TF, Guo X, Liu WK (2019) Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition. Comput Methods Appl Mech Eng 347:477–494MathSciNetCrossRef Tang S, Zhang G, Guo TF, Guo X, Liu WK (2019) Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition. Comput Methods Appl Mech Eng 347:477–494MathSciNetCrossRef
13.
go back to reference de Rooij R, Kuhl E (2016) Constitutive modeling of brain tissue: current perspectives. Appl Mech Rev 68:010801CrossRef de Rooij R, Kuhl E (2016) Constitutive modeling of brain tissue: current perspectives. Appl Mech Rev 68:010801CrossRef
14.
go back to reference Rashid B, Destrade M, Gilchrist MD (2012) Mechanical characterization of brain tissue in compression at dynamic strain rates. J Mech Behav Biomed Mater 10:23–38CrossRef Rashid B, Destrade M, Gilchrist MD (2012) Mechanical characterization of brain tissue in compression at dynamic strain rates. J Mech Behav Biomed Mater 10:23–38CrossRef
15.
go back to reference McCarthy C, Vaughan T (2015) Micromechanical failure analysis of advanced composite materials. Numer Model Fail Adv Compos Mater 14:379–409 McCarthy C, Vaughan T (2015) Micromechanical failure analysis of advanced composite materials. Numer Model Fail Adv Compos Mater 14:379–409
16.
go back to reference Bui TQ, Hu X (2021) A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech 248:107705CrossRef Bui TQ, Hu X (2021) A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech 248:107705CrossRef
17.
go back to reference Gherib S, Satha H, Pelletier JM, Chazeau L, Frihi D (2010) Cracking behavior of carbon black filled elastomers. Numer Model Fail Adv Compos Mater 09:557–561 Gherib S, Satha H, Pelletier JM, Chazeau L, Frihi D (2010) Cracking behavior of carbon black filled elastomers. Numer Model Fail Adv Compos Mater 09:557–561
18.
go back to reference Alvez PBG (2011) Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging. PhD thesis, University of Paris-Sud Alvez PBG (2011) Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging. PhD thesis, University of Paris-Sud
19.
go back to reference Yin T, Wu T, Liu J, Qu S, Yang W (2021) Essential work of fracture of soft elastomers. J Mech Phys Solids 156:104616MathSciNetCrossRef Yin T, Wu T, Liu J, Qu S, Yang W (2021) Essential work of fracture of soft elastomers. J Mech Phys Solids 156:104616MathSciNetCrossRef
20.
go back to reference Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: part II—computational implementation and validation. Mech Mater 39:909–919CrossRef Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: part II—computational implementation and validation. Mech Mater 39:909–919CrossRef
21.
go back to reference Pranavi D, Rajagopal A, Reddy JN (2022) A note on the applicability of Eringen’s nonlocal model to functionally graded materials. Mech Adv Mater Struct Pranavi D, Rajagopal A, Reddy JN (2022) A note on the applicability of Eringen’s nonlocal model to functionally graded materials. Mech Adv Mater Struct
22.
go back to reference Rao BN, Rahman S (2003) An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Comput Mech 32:40–51CrossRef Rao BN, Rahman S (2003) An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Comput Mech 32:40–51CrossRef
23.
go back to reference García IG, Paggi M, Mantič V (2014) Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: a comparison between cohesive zone and finite fracture mechanics models. Eng Fract Mech 115:96–110CrossRef García IG, Paggi M, Mantič V (2014) Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: a comparison between cohesive zone and finite fracture mechanics models. Eng Fract Mech 115:96–110CrossRef
24.
go back to reference Parmigiani JP, Thouless MD (2006) The roles of toughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids 54:266–287CrossRef Parmigiani JP, Thouless MD (2006) The roles of toughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids 54:266–287CrossRef
25.
go back to reference Nian G, Li Q, Xu Q, Qu S (2018) A cohesive zone model incorporating a coulomb friction law for fiber-reinforced composites. Compos Sci Technol 157:195–201CrossRef Nian G, Li Q, Xu Q, Qu S (2018) A cohesive zone model incorporating a coulomb friction law for fiber-reinforced composites. Compos Sci Technol 157:195–201CrossRef
26.
go back to reference Zhang P, Hu X, Bui TQ, Yao W (2019) Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci 161–162:105008CrossRef Zhang P, Hu X, Bui TQ, Yao W (2019) Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci 161–162:105008CrossRef
27.
go back to reference Wang HW, Zhou HW, Ji HW, Zhang XC (2014) Application of extended finite element method in damage progress simulation of fiber reinforced composites. Mater Des 55:191–196CrossRef Wang HW, Zhou HW, Ji HW, Zhang XC (2014) Application of extended finite element method in damage progress simulation of fiber reinforced composites. Mater Des 55:191–196CrossRef
28.
go back to reference Negi A, Soni A, Kumar S (2022) An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites. Compos Struct 294:115677CrossRef Negi A, Soni A, Kumar S (2022) An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites. Compos Struct 294:115677CrossRef
29.
go back to reference Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl E (2020) Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch Comput Methods Eng 27:1187–1230CrossRef Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl E (2020) Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch Comput Methods Eng 27:1187–1230CrossRef
30.
go back to reference Budday S, Sarem M, Starck L, Sommer G, Pfefferle J, Phunchago N, Kuhl E, Paulsen F, Steinmann P, Shastri VP, Holzapfel GA (2020) Towards microstructure-informed material models for human brain tissue. Acta Biomater 104:53–65CrossRef Budday S, Sarem M, Starck L, Sommer G, Pfefferle J, Phunchago N, Kuhl E, Paulsen F, Steinmann P, Shastri VP, Holzapfel GA (2020) Towards microstructure-informed material models for human brain tissue. Acta Biomater 104:53–65CrossRef
31.
go back to reference Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124:244–252CrossRef Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124:244–252CrossRef
32.
go back to reference Velardi F, Fraternali F, Angelillo M (2006) Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol 5:53–61CrossRef Velardi F, Fraternali F, Angelillo M (2006) Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol 5:53–61CrossRef
33.
go back to reference Feng Y, Okamoto RJ, Namani R, Genin GM, Bayly PV (2013) Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J Mech Behav Biomed Mater 23:117–132CrossRef Feng Y, Okamoto RJ, Namani R, Genin GM, Bayly PV (2013) Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J Mech Behav Biomed Mater 23:117–132CrossRef
34.
go back to reference Cloots RJH, Van Dommelen JAW, Nyberg T, Kleiven S, Geers MGD (2011) Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. J Mech Behav Biomed Mater 10:413–422 Cloots RJH, Van Dommelen JAW, Nyberg T, Kleiven S, Geers MGD (2011) Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. J Mech Behav Biomed Mater 10:413–422
35.
go back to reference Suter DM, Schaefer AW, Forscher P (2004) Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr Biol 14:1194–1199CrossRef Suter DM, Schaefer AW, Forscher P (2004) Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr Biol 14:1194–1199CrossRef
36.
go back to reference Mahajan S, Athale CA (2012) Spatial and temporal sensing limits of microtubule polarization in neuronal growth cones by intracellular gradients and forces. Biophys J 103:2432–2445CrossRef Mahajan S, Athale CA (2012) Spatial and temporal sensing limits of microtubule polarization in neuronal growth cones by intracellular gradients and forces. Biophys J 103:2432–2445CrossRef
37.
go back to reference Choo J, Sun WC (2018) Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow. Comput Methods Appl Mech Eng 330:1–32MathSciNetCrossRef Choo J, Sun WC (2018) Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow. Comput Methods Appl Mech Eng 330:1–32MathSciNetCrossRef
38.
go back to reference Sabnis PA, Forest S, Cormier J (2016) Microdamage modelling of crack initiation and propagation in FCC single crystals under complex loading conditions. Comput Methods Appl Mech Eng 312:468–491MathSciNetCrossRef Sabnis PA, Forest S, Cormier J (2016) Microdamage modelling of crack initiation and propagation in FCC single crystals under complex loading conditions. Comput Methods Appl Mech Eng 312:468–491MathSciNetCrossRef
39.
go back to reference Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826MathSciNetCrossRef Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826MathSciNetCrossRef
40.
go back to reference Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342MathSciNetCrossRef Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342MathSciNetCrossRef
41.
go back to reference Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311MathSciNetCrossRef Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311MathSciNetCrossRef
42.
go back to reference Kasirajan P, Bhattacharya S, Rajagopal A, Reddy JN (2020) Phase field modeling of fracture in quasi-brittle materials using natural neighbor Galerkin method. Comput Methods Appl Mech Eng 366:113019MathSciNetCrossRef Kasirajan P, Bhattacharya S, Rajagopal A, Reddy JN (2020) Phase field modeling of fracture in quasi-brittle materials using natural neighbor Galerkin method. Comput Methods Appl Mech Eng 366:113019MathSciNetCrossRef
43.
44.
go back to reference Raghu P, Rajagopal A, Reddy JN (2020) Nonlocal transient dynamic analysis of laminated composite plates. Mech Adv Mater Struct 27:1076–1084CrossRef Raghu P, Rajagopal A, Reddy JN (2020) Nonlocal transient dynamic analysis of laminated composite plates. Mech Adv Mater Struct 27:1076–1084CrossRef
45.
go back to reference Dhaladhuli P, Amirtham R, Reddy JN (2021) Interaction between interfacial damage and crack propagation in quasi-brittle materials. Mech Adv Mater Struct Dhaladhuli P, Amirtham R, Reddy JN (2021) Interaction between interfacial damage and crack propagation in quasi-brittle materials. Mech Adv Mater Struct
46.
go back to reference Nagaraja S, Rómer U, Matthies HG, De Lorenzis L (2023) Deterministic and stochastic phase-field modeling of anisotropic brittle fracture. Comput Methods Appl Mech Eng 408:115960MathSciNetCrossRef Nagaraja S, Rómer U, Matthies HG, De Lorenzis L (2023) Deterministic and stochastic phase-field modeling of anisotropic brittle fracture. Comput Methods Appl Mech Eng 408:115960MathSciNetCrossRef
47.
go back to reference Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRef Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRef
48.
go back to reference Bryant EC, Sun WC (2018) A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics. Comput Methods Appl Mech Eng 342:561–584MathSciNetCrossRef Bryant EC, Sun WC (2018) A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics. Comput Methods Appl Mech Eng 342:561–584MathSciNetCrossRef
49.
go back to reference Gültekin O, Dal H, Holzapfel GA (2018) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput Methods Appl Mech Eng 331:23–52MathSciNetCrossRef Gültekin O, Dal H, Holzapfel GA (2018) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput Methods Appl Mech Eng 331:23–52MathSciNetCrossRef
50.
go back to reference Gültekin O, Dal H, Holzapfel GA (2016) A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput Methods Appl Mech Eng 312:542–566MathSciNetCrossRef Gültekin O, Dal H, Holzapfel GA (2016) A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput Methods Appl Mech Eng 312:542–566MathSciNetCrossRef
51.
go back to reference Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21CrossRef Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21CrossRef
52.
go back to reference Bleyer J, Alessi R (2018) Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput Methods Appl Mech Eng 336:213–236 Bleyer J, Alessi R (2018) Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput Methods Appl Mech Eng 336:213–236
53.
go back to reference Rezaei S, Mianroodi JR, Brepols T, Reese S (2021) Direction-dependent fracture in solids: atomistically calibrated phase-field and cohesive zone model. J Mech Phys Solids 147:104253MathSciNetCrossRef Rezaei S, Mianroodi JR, Brepols T, Reese S (2021) Direction-dependent fracture in solids: atomistically calibrated phase-field and cohesive zone model. J Mech Phys Solids 147:104253MathSciNetCrossRef
54.
go back to reference Raina A, Miehe C (2016) A phase-field model for fracture in biological tissues. Biomech Model Mechanobiol 15:479–496CrossRef Raina A, Miehe C (2016) A phase-field model for fracture in biological tissues. Biomech Model Mechanobiol 15:479–496CrossRef
55.
go back to reference Li B, Maurini C (2019) Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy. J Mech Phys Solids 125:502–522MathSciNetCrossRef Li B, Maurini C (2019) Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy. J Mech Phys Solids 125:502–522MathSciNetCrossRef
56.
go back to reference Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102:711–27MathSciNetCrossRef Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102:711–27MathSciNetCrossRef
57.
go back to reference Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. Phys Rev Lett 110:144301CrossRef Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. Phys Rev Lett 110:144301CrossRef
58.
go back to reference Li B, Bouklas N (2020) A variational phase-field model for brittle fracture in polydisperse elastomer networks. Int J Solids Struct 182–183:193–204CrossRef Li B, Bouklas N (2020) A variational phase-field model for brittle fracture in polydisperse elastomer networks. Int J Solids Struct 182–183:193–204CrossRef
59.
go back to reference Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press
60.
go back to reference Yu H, Hao L, Shen R, Guo L, Shen Z, Li Y (2022) A phase field model with the mixed-mode driving force of power-law relation. Eng Fract Mech 264:108265CrossRef Yu H, Hao L, Shen R, Guo L, Shen Z, Li Y (2022) A phase field model with the mixed-mode driving force of power-law relation. Eng Fract Mech 264:108265CrossRef
61.
go back to reference Denli FA, Gültekin O, Holzapfel GA, Dal H (2020) A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. Comput Mech 65:1149–1166MathSciNetCrossRef Denli FA, Gültekin O, Holzapfel GA, Dal H (2020) A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. Comput Mech 65:1149–1166MathSciNetCrossRef
62.
go back to reference Lu Y, Qi Y, Tenardi M, Long R (2021) Mixed-mode fracture in a soft elastomer. Extreme Mech Lett 48:101380CrossRef Lu Y, Qi Y, Tenardi M, Long R (2021) Mixed-mode fracture in a soft elastomer. Extreme Mech Lett 48:101380CrossRef
63.
go back to reference Cahill LMA, Natarajan S, Bordas SPA, O’Higgins RM, McCarthy CT (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Struct 107:119–130CrossRef Cahill LMA, Natarajan S, Bordas SPA, O’Higgins RM, McCarthy CT (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Struct 107:119–130CrossRef
64.
go back to reference Wu J, McAuliffe C, Waisman H, Deodatis G (2016) Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method. Comput Methods Appl Mech Eng 312:596–634MathSciNetCrossRef Wu J, McAuliffe C, Waisman H, Deodatis G (2016) Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method. Comput Methods Appl Mech Eng 312:596–634MathSciNetCrossRef
Metadata
Title
A unifying finite strain modeling framework for anisotropic mixed-mode fracture in soft materials
Authors
D. Pranavi
P. Steinmann
A. Rajagopal
Publication date
30-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2024
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02359-y

Other articles of this Issue 1/2024

Computational Mechanics 1/2024 Go to the issue