Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2020

07-11-2019 | Original Research

A new development of sixth order accurate compact scheme for the Helmholtz equation

Authors: Neelesh Kumar, Ritesh Kumar Dubey

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A standard sixth order compact finite difference scheme for two dimensional Helmholtz equation is further improved and a more accurate scheme is presented for the two dimensional Helmholtz equation which is also compact. The novel feature of the present scheme is that it is less sensitive to the associated wave number when compared with that for available sixth order schemes. Theoretical analysis is presented for the newly constructed scheme. The high accuracy of the proposed scheme is illustrated by comparing numerical solutions for solving the two dimensional Helmholtz equations using available sixth-order schemes and the present scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Said, E.A., Noor, M.A., Al-Shejari, A.A.: Numerical solutions for system of second order boundary value problems. Korean J. Comput. Appl. Math. 5(3), 659–667 (1998)MathSciNetMATH Al-Said, E.A., Noor, M.A., Al-Shejari, A.A.: Numerical solutions for system of second order boundary value problems. Korean J. Comput. Appl. Math. 5(3), 659–667 (1998)MathSciNetMATH
2.
go back to reference Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic press, Cambridge (2014) Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic press, Cambridge (2014)
3.
go back to reference Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)MathSciNetMATHCrossRef Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)MathSciNetMATHCrossRef
4.
go back to reference Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput. Math. Appl. 11(7–8), 655–665 (1985)MathSciNetMATHCrossRef Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput. Math. Appl. 11(7–8), 655–665 (1985)MathSciNetMATHCrossRef
5.
go back to reference Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)MathSciNetMATHCrossRef Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)MathSciNetMATHCrossRef
6.
go back to reference Chawla, M.M.: A sixth-order tridiagonal finite difference method for general non-linear two-point boundary value problems. IMA J. Appl. Math. 24(1), 35–42 (1979)MathSciNetMATHCrossRef Chawla, M.M.: A sixth-order tridiagonal finite difference method for general non-linear two-point boundary value problems. IMA J. Appl. Math. 24(1), 35–42 (1979)MathSciNetMATHCrossRef
7.
go back to reference Dastour, H., Liao, W.: A fourth-order optimal finite difference scheme for the Helmholtz equation with PML. Comput. Math. Appl. 78(6), 2147–2165 (2019)MathSciNetCrossRef Dastour, H., Liao, W.: A fourth-order optimal finite difference scheme for the Helmholtz equation with PML. Comput. Math. Appl. 78(6), 2147–2165 (2019)MathSciNetCrossRef
8.
go back to reference Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)MathSciNetMATHCrossRef Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)MathSciNetMATHCrossRef
9.
go back to reference Fournié, M., Karaa, S.: Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative. J. Appl. Math. Comput. 22(3), 349–363 (2006)MathSciNetMATHCrossRef Fournié, M., Karaa, S.: Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative. J. Appl. Math. Comput. 22(3), 349–363 (2006)MathSciNetMATHCrossRef
10.
go back to reference Fu, Y.: Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers. J. Comput. Math. 26, 98–111 (2008) MathSciNetMATH Fu, Y.: Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers. J. Comput. Math. 26, 98–111 (2008) MathSciNetMATH
11.
go back to reference Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, Berlin (1994)MATHCrossRef Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, Berlin (1994)MATHCrossRef
12.
go back to reference Harari, I., Hughes, T.J.R.: Finite element methods for the Helmholtz equation in an exterior domain: model problems. Comput. Methods Appl. Mech. Eng. 87(1), 59–96 (1991)MathSciNetMATHCrossRef Harari, I., Hughes, T.J.R.: Finite element methods for the Helmholtz equation in an exterior domain: model problems. Comput. Methods Appl. Mech. Eng. 87(1), 59–96 (1991)MathSciNetMATHCrossRef
13.
go back to reference Harari, I., Turkel, E.: Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119(2), 252–270 (1995)MathSciNetMATHCrossRef Harari, I., Turkel, E.: Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119(2), 252–270 (1995)MathSciNetMATHCrossRef
14.
go back to reference Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)MathSciNetMATHCrossRef Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)MathSciNetMATHCrossRef
15.
go back to reference Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number part II: the hp version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)MathSciNetMATHCrossRef Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number part II: the hp version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)MathSciNetMATHCrossRef
16.
go back to reference Manohar, R.P., Stephenson, J.W.: Single cell high order difference methods for the Helmholtz equation. J. Comput. Phys. 51(3), 444–453 (1983)MATHCrossRef Manohar, R.P., Stephenson, J.W.: Single cell high order difference methods for the Helmholtz equation. J. Comput. Phys. 51(3), 444–453 (1983)MATHCrossRef
17.
go back to reference Nabavi, M., Siddiqui, M.H.K., Dargahi, J.: A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. J. Sound Vib. 307(3), 972–982 (2007)CrossRef Nabavi, M., Siddiqui, M.H.K., Dargahi, J.: A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. J. Sound Vib. 307(3), 972–982 (2007)CrossRef
18.
go back to reference Patel, K.S., Mehra, M.: A numerical study of Asian option with high-order compact finite difference scheme. J. Appl. Math. Comput. 57(1–2), 467–491 (2018)MathSciNetMATHCrossRef Patel, K.S., Mehra, M.: A numerical study of Asian option with high-order compact finite difference scheme. J. Appl. Math. Comput. 57(1–2), 467–491 (2018)MathSciNetMATHCrossRef
19.
go back to reference Peiró, J., Sherwin, S.: Finite difference, finite element and finite volume methods for partial differential equations. In: Yip, S. (ed.) Handbook of materials modeling, 2415–2446. Springer (2005) Peiró, J., Sherwin, S.: Finite difference, finite element and finite volume methods for partial differential equations. In: Yip, S. (ed.) Handbook of materials modeling, 2415–2446. Springer (2005)
20.
go back to reference Settle, S.O., Douglas, C.C., Kim, I., Sheen, D.: On the derivation of highest-order compact finite difference schemes for the one-and two-dimensional Poisson equation with Dirichlet boundary conditions. SIAM J. Numer. Anal. 51(4), 2470–2490 (2013)MathSciNetMATHCrossRef Settle, S.O., Douglas, C.C., Kim, I., Sheen, D.: On the derivation of highest-order compact finite difference schemes for the one-and two-dimensional Poisson equation with Dirichlet boundary conditions. SIAM J. Numer. Anal. 51(4), 2470–2490 (2013)MathSciNetMATHCrossRef
21.
go back to reference Shaw, R.P.: Integral equation methods in acoustics. Bound. Elem. X 4, 221–244 (1988)MathSciNet Shaw, R.P.: Integral equation methods in acoustics. Bound. Elem. X 4, 221–244 (1988)MathSciNet
22.
go back to reference Sheu, T.W.H., Hsieh, L.W., Chen, C.F.: Development of a three-point sixth-order Helmholtz scheme. J. Comput. Acoust. 16(3), 343–359 (2008)MathSciNetMATHCrossRef Sheu, T.W.H., Hsieh, L.W., Chen, C.F.: Development of a three-point sixth-order Helmholtz scheme. J. Comput. Acoust. 16(3), 343–359 (2008)MathSciNetMATHCrossRef
23.
go back to reference Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998)MathSciNetMATHCrossRef Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998)MathSciNetMATHCrossRef
24.
go back to reference Singer, I., Turkel, E.: Sixth-order accurate finite difference schemes for the Helmholtz equation. J. Comput. Acoust. 14(3), 339–351 (2006)MathSciNetMATHCrossRef Singer, I., Turkel, E.: Sixth-order accurate finite difference schemes for the Helmholtz equation. J. Comput. Acoust. 14(3), 339–351 (2006)MathSciNetMATHCrossRef
25.
go back to reference Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math. 203(1), 15–31 (2007)MathSciNetMATHCrossRef Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math. 203(1), 15–31 (2007)MathSciNetMATHCrossRef
26.
go back to reference Thomas, J.W.: Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Springer, Berlin (2013) Thomas, J.W.: Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Springer, Berlin (2013)
27.
go back to reference Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)MathSciNetMATHCrossRef Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)MathSciNetMATHCrossRef
28.
go back to reference Wu, T., Xu, R.: An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Comput. Math. Appl. 75, 2520–2537 (2018)MathSciNetMATHCrossRef Wu, T., Xu, R.: An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Comput. Math. Appl. 75, 2520–2537 (2018)MathSciNetMATHCrossRef
29.
go back to reference Young, D.M.: Iterative Solution of Large Linear Systems. Elsevier, Amsterdam (2014) Young, D.M.: Iterative Solution of Large Linear Systems. Elsevier, Amsterdam (2014)
30.
go back to reference Zhang, Y., Wang, K., Guo, R.: Sixth-order finite difference scheme for the Helmholtz equation with inhomogeneous Robin boundary condition. Adv. Differ. Equ. 2019(1), 362 (2019)MathSciNetCrossRef Zhang, Y., Wang, K., Guo, R.: Sixth-order finite difference scheme for the Helmholtz equation with inhomogeneous Robin boundary condition. Adv. Differ. Equ. 2019(1), 362 (2019)MathSciNetCrossRef
Metadata
Title
A new development of sixth order accurate compact scheme for the Helmholtz equation
Authors
Neelesh Kumar
Ritesh Kumar Dubey
Publication date
07-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2020
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-019-01301-x

Other articles of this Issue 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Go to the issue

Premium Partner