Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2020

06-11-2019 | Original Research

Novel numerical method of the fractional cable equation

Authors: Y. Chen, Chang-Ming Chen

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, mainly based on the second order compact approximation of first order derivative, the novel numerical method with second order temporal accuracy and fourth order spatial accuracy is proposed to solve the fractional cable equation. The numerical analysis involving convergence and stability of the novel numerical method subject to strict and detailed discussion. In addition, the numerical experiment strongly support the theoretical analysis results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Atangana, A., Gomez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Physica A 476, 1–14 (2017)MathSciNetCrossRef Atangana, A., Gomez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Physica A 476, 1–14 (2017)MathSciNetCrossRef
2.
go back to reference Atangana, A., Gomez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. ChaosSolitons Fractals 102, 285–294 (2017) MathSciNetCrossRef Atangana, A., Gomez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. ChaosSolitons Fractals 102, 285–294 (2017) MathSciNetCrossRef
3.
go back to reference Atangana, A., Gomez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)MathSciNetCrossRef Atangana, A., Gomez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)MathSciNetCrossRef
4.
go back to reference Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)MathSciNetCrossRef Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)MathSciNetCrossRef
5.
go back to reference Chen, C.-M., Liu, F., Turner, I., Anh, V.: Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef Chen, C.-M., Liu, F., Turner, I., Anh, V.: Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef
6.
go back to reference Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)MathSciNetCrossRef Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)MathSciNetCrossRef
7.
go back to reference Chen, C.-M., Liu, F., Burrage, K.: Numerical analysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236, 209–224 (2011)MathSciNetCrossRef Chen, C.-M., Liu, F., Burrage, K.: Numerical analysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236, 209–224 (2011)MathSciNetCrossRef
8.
go back to reference Chen, Y.M., Liu, L.Q., Li, B.F., Sun, Y.N.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014) MathSciNetMATH Chen, Y.M., Liu, L.Q., Li, B.F., Sun, Y.N.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014) MathSciNetMATH
9.
go back to reference Gomez-Aguilar, J.F., et al.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–23 (2017)CrossRef Gomez-Aguilar, J.F., et al.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–23 (2017)CrossRef
10.
go back to reference Gomez-Aguilar, J.F., et al.: Bateman–Feshbach Tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 55 (2017)CrossRef Gomez-Aguilar, J.F., et al.: Bateman–Feshbach Tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 55 (2017)CrossRef
11.
go back to reference Gomez-Aguilar, J.F., et al.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. N. Y. 2016, 173 (2016) CrossRef Gomez-Aguilar, J.F., et al.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. N. Y. 2016, 173 (2016) CrossRef
12.
go back to reference Gomez-Aguilar, J.F., et al.: Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel. Adv. Differ. Equ. N. Y. 2017(1), 68 (2017)MathSciNetCrossRef Gomez-Aguilar, J.F., et al.: Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel. Adv. Differ. Equ. N. Y. 2017(1), 68 (2017)MathSciNetCrossRef
13.
go back to reference Henry, B.I., Langlands, T.A.M.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)CrossRef Henry, B.I., Langlands, T.A.M.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)CrossRef
14.
go back to reference Hu, X.L., Zhang, L.M.: Implicit compact difference schemes for the fractional cable equation. Appl. Math. Model. 36, 4027–4043 (2012)MathSciNetCrossRef Hu, X.L., Zhang, L.M.: Implicit compact difference schemes for the fractional cable equation. Appl. Math. Model. 36, 4027–4043 (2012)MathSciNetCrossRef
16.
go back to reference Irandoust-Pakchin, S., Javidi, M., Kheiri, H.: Analytical solutions for the fractional nonlinear cable equation using a modified homotopy perturbation and separation of variables methods. Comput. Math. Math. Phys. 56, 116–131 (2016)MathSciNetCrossRef Irandoust-Pakchin, S., Javidi, M., Kheiri, H.: Analytical solutions for the fractional nonlinear cable equation using a modified homotopy perturbation and separation of variables methods. Comput. Math. Math. Phys. 56, 116–131 (2016)MathSciNetCrossRef
17.
go back to reference Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/35, University of New South Wales (2005) Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/35, University of New South Wales (2005)
18.
go back to reference Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009)MathSciNetCrossRef Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009)MathSciNetCrossRef
19.
go back to reference Li, C., Deng, W.H.: Analytical solutions, moments, and their asymptotic behaviors for the time-space fractional cable equation. Commun. Theor. Phys. 62, 54–60 (2014)MathSciNetCrossRef Li, C., Deng, W.H.: Analytical solutions, moments, and their asymptotic behaviors for the time-space fractional cable equation. Commun. Theor. Phys. 62, 54–60 (2014)MathSciNetCrossRef
20.
go back to reference Lin, Y.M., Li, X.J., Xu, C.J.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRef Lin, Y.M., Li, X.J., Xu, C.J.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRef
22.
go back to reference Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)MathSciNetCrossRef Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)MathSciNetCrossRef
23.
go back to reference Morales-Delgado, V.F., et al.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRef Morales-Delgado, V.F., et al.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRef
24.
go back to reference Shivanian, E., Jafarabadi, A.: An improved meshless algorithm for a kind of fractional cable problem with error estimate. Chaos Solitons Fractals 110, 138–151 (2018)MathSciNetCrossRef Shivanian, E., Jafarabadi, A.: An improved meshless algorithm for a kind of fractional cable problem with error estimate. Chaos Solitons Fractals 110, 138–151 (2018)MathSciNetCrossRef
25.
go back to reference Shivanian, E., Jafarabadi, A.: Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod. Phys. Lett. B 32(22), 1850251 (2018)MathSciNetCrossRef Shivanian, E., Jafarabadi, A.: Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod. Phys. Lett. B 32(22), 1850251 (2018)MathSciNetCrossRef
26.
go back to reference Shivanian, E., Jafarabadi, A.: The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 129, 1–25 (2018)MathSciNetCrossRef Shivanian, E., Jafarabadi, A.: The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 129, 1–25 (2018)MathSciNetCrossRef
27.
go back to reference Shivanian, E., Jafarabadi, A.: Analysis of the spectral meshless radial point interpolation for solving fractional reaction-subdiffusion equation. J. Comput. Appl. Math. 336, 98–113 (2018)MathSciNetCrossRef Shivanian, E., Jafarabadi, A.: Analysis of the spectral meshless radial point interpolation for solving fractional reaction-subdiffusion equation. J. Comput. Appl. Math. 336, 98–113 (2018)MathSciNetCrossRef
29.
go back to reference Yepez-Martinez, H., et al.: The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fs. 62(4), 310–316 (2016) MathSciNet Yepez-Martinez, H., et al.: The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fs. 62(4), 310–316 (2016) MathSciNet
30.
go back to reference Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)MathSciNetCrossRef Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)MathSciNetCrossRef
31.
go back to reference Zhang, H.X., Yang, X.H., Han, X.L.: Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. Comput. Math. Appl. 68, 1710–1722 (2014)MathSciNetCrossRef Zhang, H.X., Yang, X.H., Han, X.L.: Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. Comput. Math. Appl. 68, 1710–1722 (2014)MathSciNetCrossRef
32.
go back to reference Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algorithms 72, 447–466 (2016)MathSciNetCrossRef Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algorithms 72, 447–466 (2016)MathSciNetCrossRef
Metadata
Title
Novel numerical method of the fractional cable equation
Authors
Y. Chen
Chang-Ming Chen
Publication date
06-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2020
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-019-01302-w

Other articles of this Issue 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Go to the issue

Premium Partner