Skip to main content
Top
Published in: The VLDB Journal 3/2024

15-02-2024 | Regular Paper

A new distributional treatment for time series anomaly detection

Authors: Kai Ming Ting, Zongyou Liu, Lei Gong, Hang Zhang, Ye Zhu

Published in: The VLDB Journal | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Time series is traditionally treated with two main approaches, i.e., the time domain approach and the frequency domain approach. These approaches must rely on a sliding window so that time-shift versions of a sequence can be measured to be similar. Coupled with the use of a root point-to-point measure, existing methods often have quadratic time complexity. We offer the third \(\mathbb {R}\) domain approach. It begins with an insight that sequences in a stationary time series can be treated as sets of independent and identically distributed (iid) points generated from an unknown distribution in \(\mathbb {R}\). This \(\mathbb {R}\) domain treatment enables two new possibilities: (a) The similarity between two sequences can be computed using a distributional measure such as Wasserstein distance (WD), kernel mean embedding or isolation distributional kernel (\(\mathcal {K}_I\)), and (b) these distributional measures become non-sliding-window-based. Together, they offer an alternative that has more effective similarity measurements and runs significantly faster than the point-to-point and sliding-window-based measures. Our empirical evaluation shows that \(\mathcal {K}_I\) is an effective and efficient distributional measure for time series; and \(\mathcal {K}_I\)-based detectors have better detection accuracy than existing detectors in two tasks: (i) anomalous sequence detection in a stationary time series and (ii) anomalous time series detection in a dataset of non-stationary time series. The insight makes underutilized “old things new again” which gives existing distributional measures and anomaly detectors a new life in time series anomaly detection that would otherwise be impossible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We use this term to denote either a part of one stationary time series or one time series in a dataset of non-stationary time series, depending on which of the two anomaly detection tasks under investigation.
 
2
Detecting anomalous sequences in a non-stationary time series is outside the scope of this paper because the notion of normal sequences could be defined in various ways, depending on the kind of non-stationarity which is often ill-defined. Yet, we show in Sect. 7 that the proposed treatment works for the second anomaly detection task in a dataset of time series, where individual time series can be non-stationary.
 
3
We have attempted more complicated measures such as MSM [52] and TWED [31]. They are very time-consuming because they have at least quadratic time complexity, and neither of them (using the Python implementations from sktime [30]) could complete the run within the 2-day time frame for any dataset we have used.
 
4
These methods are evaluated for time series classification in their papers, but their representation steps do not need label information and are independent of the downstream task.
 
5
The feature map of Gaussian kernel is approximated from the Nyström method [63] in order to accelerate the computation. The sample size of the Nyström method is set to \(\sqrt{nl}\) which is also equal to the number of features. The bandwidth of \(\mathcal {K}_G\) is searched over \(\{10^m\ |\ m=-4,-3,\ldots ,0,1\}\).
 
6
The biggest dataset in the UCR archive is not used due to the lack of memories.
 
Literature
1.
go back to reference Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based anomaly detection using nearest-neighbor ensembles. Comput. Intell. 34(4), 968–998 (2018)MathSciNetCrossRef Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based anomaly detection using nearest-neighbor ensembles. Comput. Intell. 34(4), 968–998 (2018)MathSciNetCrossRef
2.
go back to reference Beggel, L., Kausler, B.X., Schiegg, M., Pfeiffer, M., Bischl, B.: Time series anomaly detection based on shapelet learning. Comput. Stat. 34(3), 945–976 (2019)MathSciNetCrossRef Beggel, L., Kausler, B.X., Schiegg, M., Pfeiffer, M., Bischl, B.: Time series anomaly detection based on shapelet learning. Comput. Stat. 34(3), 945–976 (2019)MathSciNetCrossRef
3.
go back to reference Benkabou, S.E., Benabdeslem, K., Canitia, B.: Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl. Inf. Syst. 54(2), 463–486 (2018)CrossRef Benkabou, S.E., Benabdeslem, K., Canitia, B.: Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl. Inf. Syst. 54(2), 463–486 (2018)CrossRef
4.
go back to reference Bock, C., Togninalli, M., Ghisu, E., Gumbsch, T., Rieck, B., Borgwardt, K.: A Wasserstein subsequence kernel for time series. In: Proceedings of the International Conference on Data Mining, pp. 964–969 (2019) Bock, C., Togninalli, M., Ghisu, E., Gumbsch, T., Rieck, B., Borgwardt, K.: A Wasserstein subsequence kernel for time series. In: Proceedings of the International Conference on Data Mining, pp. 964–969 (2019)
5.
go back to reference Boniol, P., Linardi, M., Roncallo, F., Palpanas, T., Meftah, M., Remy, E.: Unsupervised and scalable subsequence anomaly detection in large data series. VLDB J. 30(6), 909–931 (2021)CrossRef Boniol, P., Linardi, M., Roncallo, F., Palpanas, T., Meftah, M., Remy, E.: Unsupervised and scalable subsequence anomaly detection in large data series. VLDB J. 30(6), 909–931 (2021)CrossRef
6.
go back to reference Boniol, P., Paparrizos, J., Palpanas, T., Franklin, M.J.: SAND: streaming subsequence anomaly detection. In: Proceedings of the VLDB Endowment, pp. 1717–1729 (2021) Boniol, P., Paparrizos, J., Palpanas, T., Franklin, M.J.: SAND: streaming subsequence anomaly detection. In: Proceedings of the VLDB Endowment, pp. 1717–1729 (2021)
7.
go back to reference Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based local outliers. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based local outliers. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
8.
go back to reference Cazelles, E., Robert, A., Tobar, F.: The Wasserstein–Fourier distance for stationary time series. IEEE Trans. Signal Process. 69, 709–721 (2020)MathSciNetCrossRef Cazelles, E., Robert, A., Tobar, F.: The Wasserstein–Fourier distance for stationary time series. IEEE Trans. Signal Process. 69, 709–721 (2020)MathSciNetCrossRef
9.
go back to reference Chan, F.P., Fu, A.C.: Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. Knowl. Data Eng. 15(3), 686–705 (2003)CrossRef Chan, F.P., Fu, A.C.: Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. Knowl. Data Eng. 15(3), 686–705 (2003)CrossRef
10.
go back to reference Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Keogh, E.: The UCR time series archive. IEEE/CAA J. Autom. Sinica 6(6), 1293–1305 (2019) Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Keogh, E.: The UCR time series archive. IEEE/CAA J. Autom. Sinica 6(6), 1293–1305 (2019)
11.
go back to reference Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: A very fast (almost) deterministic transform for time series classification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 248–257 (2021) Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: A very fast (almost) deterministic transform for time series classification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 248–257 (2021)
12.
go back to reference Demšar, J.: Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNet Demšar, J.: Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNet
13.
go back to reference Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366), 427–431 (1979)MathSciNetCrossRef Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366), 427–431 (1979)MathSciNetCrossRef
14.
go back to reference Elliott, G., Rothenberg, T.J., Stock, J.H.: Efficient tests for an autoregressive unit root. Econometrica 64(4), 813–836 (1996)MathSciNetCrossRef Elliott, G., Rothenberg, T.J., Stock, J.H.: Efficient tests for an autoregressive unit root. Econometrica 64(4), 813–836 (1996)MathSciNetCrossRef
15.
go back to reference Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. ACM SIGMOD Rec. 23(2), 419–429 (1994)CrossRef Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. ACM SIGMOD Rec. 23(2), 419–429 (1994)CrossRef
16.
go back to reference Gharghabi, S., Imani, S., Bagnall, A., Darvishzadeh, A., Keogh, E.: An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. Data Min. Knowl. Disc. 34(4), 1104–1135 (2020)MathSciNetCrossRef Gharghabi, S., Imani, S., Bagnall, A., Darvishzadeh, A., Keogh, E.: An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. Data Min. Knowl. Disc. 34(4), 1104–1135 (2020)MathSciNetCrossRef
17.
go back to reference Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: breaking the quadratic barrier. ACM Trans. Algorithms 14(4), 1–17 (2018)MathSciNetCrossRef Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: breaking the quadratic barrier. ACM Trans. Algorithms 14(4), 1–17 (2018)MathSciNetCrossRef
18.
go back to reference Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)CrossRef Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)CrossRef
19.
go back to reference Hobijn, B., Franses, P.H., Ooms, M.: Generalizations of the KPSS-test for stationarity. Stat. Neerl. 58(4), 483–502 (2004)MathSciNetCrossRef Hobijn, B., Franses, P.H., Ooms, M.: Generalizations of the KPSS-test for stationarity. Stat. Neerl. 58(4), 483–502 (2004)MathSciNetCrossRef
20.
go back to reference Hyndman, R.J.: Computing and graphing highest density regions. Am. Stat. 50(2), 120–126 (1996)CrossRef Hyndman, R.J.: Computing and graphing highest density regions. Am. Stat. 50(2), 120–126 (1996)CrossRef
21.
go back to reference Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection. In: Proceedings of the International Conference on Data Mining Workshop, pp. 1616–1619 (2015) Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection. In: Proceedings of the International Conference on Data Mining Workshop, pp. 1616–1619 (2015)
22.
go back to reference Itakura, F.: Analysis synthesis telephony based on the maximum likelihood method. In: Proceedings of the 6th International Congress on Acoustics, pp. 280–292 (1968) Itakura, F.: Analysis synthesis telephony based on the maximum likelihood method. In: Proceedings of the 6th International Congress on Acoustics, pp. 280–292 (1968)
23.
go back to reference Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Exemplar learning for extremely efficient anomaly detection in real-valued time series. Data Min. Knowl. Disc. 30(6), 1427–1454 (2016)MathSciNetCrossRef Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Exemplar learning for extremely efficient anomaly detection in real-valued time series. Data Min. Knowl. Disc. 30(6), 1427–1454 (2016)MathSciNetCrossRef
24.
go back to reference Kalpakis, K., Gada, D., Puttagunta, V.: Distance measures for effective clustering of arima time-series. In: Proceedings of the IEEE International Conference on Data Mining, pp. 273–280 (2001) Kalpakis, K., Gada, D., Puttagunta, V.: Distance measures for effective clustering of arima time-series. In: Proceedings of the IEEE International Conference on Data Mining, pp. 273–280 (2001)
25.
go back to reference Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time series subsequence. In: Proceedings of the IEEE International Conference on Data Mining, pp. 226–233 (2005) Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time series subsequence. In: Proceedings of the IEEE International Conference on Data Mining, pp. 226–233 (2005)
26.
go back to reference Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)CrossRef Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)CrossRef
27.
go back to reference Klein, J.L.: Statistical Visions in Time: A History of Time Series Analysis, pp. 1662–1938. Cambridge University Press, Cambridge (1997) Klein, J.L.: Statistical Visions in Time: A History of Time Series Analysis, pp. 1662–1938. Cambridge University Press, Cambridge (1997)
28.
go back to reference Knox, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases, pp. 392–403 (1998) Knox, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases, pp. 392–403 (1998)
29.
go back to reference Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the International Conference on Data Mining, pp. 413–422 (2008) Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the International Conference on Data Mining, pp. 413–422 (2008)
30.
go back to reference Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.: sktime: A unified interface for machine learning with time series. arXiv:1909.07872 (2019) Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.: sktime: A unified interface for machine learning with time series. arXiv:​1909.​07872 (2019)
31.
go back to reference Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2008)CrossRef Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2008)CrossRef
32.
go back to reference Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRef Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRef
33.
go back to reference Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B., et al.: Kernel mean embedding of distributions: a review and beyond. Found. Trends® Mach. Learn. 10(1–2), 1–141 (2017) Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B., et al.: Kernel mean embedding of distributions: a review and beyond. Found. Trends® Mach. Learn. 10(1–2), 1–141 (2017)
34.
go back to reference Muandet, K., Schölkopf, B.: One-class support measure machines for group anomaly detection. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pp. 449–458 (2013) Muandet, K., Schölkopf, B.: One-class support measure machines for group anomaly detection. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pp. 449–458 (2013)
35.
go back to reference Paparrizos, J., Boniol, P., Palpanas, T., Tsay, R.S., Elmore, A., Franklin, M.J.: Volume under the surface: a new accuracy evaluation measure for time-series anomaly detection. In: Proceedings of the VLDB Endowment, pp. 2774–2787 (2022) Paparrizos, J., Boniol, P., Palpanas, T., Tsay, R.S., Elmore, A., Franklin, M.J.: Volume under the surface: a new accuracy evaluation measure for time-series anomaly detection. In: Proceedings of the VLDB Endowment, pp. 2774–2787 (2022)
36.
go back to reference Paparrizos, J., Franklin, M.J.: Grail: efficient time-series representation learning. In: Proceedings of the VLDB Endowment, pp. 1762–1777 (2019) Paparrizos, J., Franklin, M.J.: Grail: efficient time-series representation learning. In: Proceedings of the VLDB Endowment, pp. 1762–1777 (2019)
37.
go back to reference Paparrizos, J., Gravano, L.: k-Shape: Efficient and accurate clustering of time series. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1855–1870 (2015) Paparrizos, J., Gravano, L.: k-Shape: Efficient and accurate clustering of time series. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1855–1870 (2015)
38.
go back to reference Paparrizos, J., Kang, Y., Boniol, P., Tsay, R.S., Palpanas, T., Franklin, M.J.: TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection. In: Proceedings of the VLDB Endowment, pp. 1697–1711 (2022) Paparrizos, J., Kang, Y., Boniol, P., Tsay, R.S., Palpanas, T., Franklin, M.J.: TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection. In: Proceedings of the VLDB Endowment, pp. 1697–1711 (2022)
39.
go back to reference Paparrizos, J., Liu, C., Elmore, A.J., Franklin, M.J.: Debunking four long-standing misconceptions of time-series distance measures. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1887–1905 (2020) Paparrizos, J., Liu, C., Elmore, A.J., Franklin, M.J.: Debunking four long-standing misconceptions of time-series distance measures. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1887–1905 (2020)
40.
go back to reference Popivanov, I., Miller, R.J.: Similarity search over time-series data using wavelets. In: Proceedings of the International Conference on Data Engineering, pp. 212–221 (2002) Popivanov, I., Miller, R.J.: Similarity search over time-series data using wavelets. In: Proceedings of the International Conference on Data Engineering, pp. 212–221 (2002)
41.
go back to reference Qin, X., Ting, K.M., Zhu, Y., Lee, V.C.: Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4755–4762 (2019) Qin, X., Ting, K.M., Zhu, Y., Lee, V.C.: Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4755–4762 (2019)
42.
go back to reference Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images. In: Proceedings of the International Conference on Machine Learning, pp. 8703–8714 (2021) Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images. In: Proceedings of the International Conference on Machine Learning, pp. 8703–8714 (2021)
43.
go back to reference RueshendorffS, L.: Wasserstein metric. In: Encyclopedia of Mathematics (2002) RueshendorffS, L.: Wasserstein metric. In: Encyclopedia of Mathematics (2002)
44.
go back to reference Sakoe, H.: Dynamic-programming approach to continuous speech recognition. In: Proceedings of the International Congress of Acoustics (1971) Sakoe, H.: Dynamic-programming approach to continuous speech recognition. In: Proceedings of the International Congress of Acoustics (1971)
45.
go back to reference Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)CrossRef Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)CrossRef
46.
go back to reference Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series: a comprehensive evaluation. In: Proceedings of the VLDB Endowment, pp. 1779–1797 (2022) Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series: a comprehensive evaluation. In: Proceedings of the VLDB Endowment, pp. 1779–1797 (2022)
47.
go back to reference Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001) Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
48.
go back to reference Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S.: Time series anomaly discovery with grammar-based compression. In: Proceedings of the 18th International Conference on Extending Database Technology, pp. 481–492 (2015) Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S.: Time series anomaly discovery with grammar-based compression. In: Proceedings of the 18th International Conference on Extending Database Technology, pp. 481–492 (2015)
49.
go back to reference Shen, Y., Chen, Y., Keogh, E., Jin, H.: Accelerating time series searching with large uniform scaling. In: Proceedings of the SIAM International Conference on Data Mining, pp. 234–242 (2018) Shen, Y., Chen, Y., Keogh, E., Jin, H.: Accelerating time series searching with large uniform scaling. In: Proceedings of the SIAM International Conference on Data Mining, pp. 234–242 (2018)
50.
go back to reference Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R Examples. Springer, Berlin (2017)CrossRef Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R Examples. Springer, Berlin (2017)CrossRef
51.
go back to reference Smola, A., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding for distributions. In: Proceedings of the International Conference on Algorithmic Learning Theory, pp. 13–31 (2007) Smola, A., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding for distributions. In: Proceedings of the International Conference on Algorithmic Learning Theory, pp. 13–31 (2007)
52.
go back to reference Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 25(6), 1425–1438 (2012)CrossRef Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 25(6), 1425–1438 (2012)CrossRef
53.
go back to reference Tan, C.W., Petitjean, F., Webb, G.I.: Elastic bands across the path: A new framework and method to lower bound DTW. In: Proceedings of the SIAM International Conference on Data Mining, pp. 522–530 (2019) Tan, C.W., Petitjean, F., Webb, G.I.: Elastic bands across the path: A new framework and method to lower bound DTW. In: Proceedings of the SIAM International Conference on Data Mining, pp. 522–530 (2019)
54.
go back to reference Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., et al.: Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21(1), 4686–4691 (2020) Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., et al.: Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21(1), 4686–4691 (2020)
55.
go back to reference Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)CrossRef Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)CrossRef
56.
go back to reference Ting, K.M., Liu, Z., Zhang, H., Zhu, Y.: A new distributional treatment for time series and an anomaly detection investigation. In: Proceedings of the VLDB Endowment, pp. 2321–2333 (2022) Ting, K.M., Liu, Z., Zhang, H., Zhu, Y.: A new distributional treatment for time series and an anomaly detection investigation. In: Proceedings of the VLDB Endowment, pp. 2321–2333 (2022)
57.
go back to reference Ting, K.M., Wells, J.R., Washio, T.: Isolation kernel: the X factor in efficient and effective large scale online kernel learning. Data Min. Knowl. Disc. 35(6), 2282–2312 (2021)MathSciNetCrossRef Ting, K.M., Wells, J.R., Washio, T.: Isolation kernel: the X factor in efficient and effective large scale online kernel learning. Data Min. Knowl. Disc. 35(6), 2282–2312 (2021)MathSciNetCrossRef
58.
go back to reference Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for kernel based anomaly detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 198–206 (2020) Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for kernel based anomaly detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 198–206 (2020)
59.
go back to reference Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for point and group anomaly detections. IEEE Trans. Knowl. Data Eng. 35(03), 2697–2710 (2023) Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for point and group anomaly detections. IEEE Trans. Knowl. Data Eng. 35(03), 2697–2710 (2023)
60.
go back to reference Ting, K.M., Zhu, Y., Zhou, Z.H.: Isolation kernel and its effect on SVM. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2329–2337 (2018) Ting, K.M., Zhu, Y., Zhou, Z.H.: Isolation kernel and its effect on SVM. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2329–2337 (2018)
61.
go back to reference Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein Weisfeiler-Lehman graph kernels. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 6436–6446 (2019) Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein Weisfeiler-Lehman graph kernels. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 6436–6446 (2019)
62.
go back to reference Wu, R., Keogh, E.J.: Current time series anomaly detection benchmarks are flawed and are creating the illusion of progress. IEEE Trans. Knowl. Data Eng. 35(03), 2421–2429 (2023) Wu, R., Keogh, E.J.: Current time series anomaly detection benchmarks are flawed and are creating the illusion of progress. IEEE Trans. Knowl. Data Eng. 35(03), 2421–2429 (2023)
63.
go back to reference Yang, T., Li, Y.f., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström method vs random Fourier features: a theoretical and empirical comparison. In: Proceedings of Conference on Neural Information Processing Systems, pp. 476–484 (2012) Yang, T., Li, Y.f., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström method vs random Fourier features: a theoretical and empirical comparison. In: Proceedings of Conference on Neural Information Processing Systems, pp. 476–484 (2012)
64.
go back to reference Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: Proceedings of the International Conference on Data Mining, pp. 1317–1322 (2016) Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: Proceedings of the International Conference on Data Mining, pp. 1317–1322 (2016)
65.
go back to reference Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., Xu, B.: Ts2vec: Towards universal representation of time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8980–8987 (2022) Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., Xu, B.: Ts2vec: Towards universal representation of time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8980–8987 (2022)
66.
go back to reference Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.C.M., Funning, G., Mueen, A., Brisk, P., Keogh, E.: Matrix profile II: Exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins. In: Proceedings of the International Conference on Data Mining, pp. 739–748 (2016) Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.C.M., Funning, G., Mueen, A., Brisk, P., Keogh, E.: Matrix profile II: Exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins. In: Proceedings of the International Conference on Data Mining, pp. 739–748 (2016)
Metadata
Title
A new distributional treatment for time series anomaly detection
Authors
Kai Ming Ting
Zongyou Liu
Lei Gong
Hang Zhang
Ye Zhu
Publication date
15-02-2024
Publisher
Springer Berlin Heidelberg
Published in
The VLDB Journal / Issue 3/2024
Print ISSN: 1066-8888
Electronic ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-023-00832-x

Other articles of this Issue 3/2024

The VLDB Journal 3/2024 Go to the issue

Regular Paper

MM-DIRECT

Premium Partner