Skip to main content
Top
Published in: The VLDB Journal 3/2024

28-02-2024 | Regular Paper

Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain

Authors: Hong Lin, Ke Chen, Dawei Jiang, Lidan Shou, Gang Chen

Published in: The VLDB Journal | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Federated learning (FL) enables learning a model from data distributed across numerous workers while preserving data privacy. However, the classical FL technique is designed for Web2 applications where participants are trusted to produce correct computation results. Moreover, classical FL workers are assumed to voluntarily contribute their computational resources and have the same learning speed. Therefore, the classical FL technique is not applicable to Web3 applications, where participants are untrusted and self-interested players with potentially malicious behaviors and heterogeneous learning speeds. This paper proposes Refiner, a novel blockchain-powered decentralized FL system for Web3 applications. Refiner addresses the challenges introduced by Web3 participants by extending the classical FL technique with three interoperative extensions: (1) an incentive scheme for attracting self-interested participants, (2) a two-stage audit scheme for preventing malicious behavior, and (3) an incentive-aware semi-synchronous learning scheme for handling heterogeneous workers. We provide theoretical analyses of the security and efficiency of Refiner. Extensive experimental results on the CIFAR-10 and Shakespeare datasets confirm the effectiveness, security, and efficiency of Refiner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, vol. 108, pp. 2938–2948 (2020) Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, vol. 108, pp. 2938–2948 (2020)
2.
go back to reference Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: ICML, vol. 97, pp. 634–643 (2019) Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: ICML, vol. 97, pp. 634–643 (2019)
3.
go back to reference Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: NeurIPS (2017) Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: NeurIPS (2017)
4.
go back to reference Buterin, V.: A next-generation smart contract and decentralized application platform (2014) Buterin, V.: A next-generation smart contract and decentralized application platform (2014)
5.
go back to reference Caldas, S., Wu, P., Li, T., Konecný, J., McMahan, H.B., Smith, V., Talwalkar, A.: LEAF: a benchmark for federated settings. In: NeurIPS Workshop (2019) Caldas, S., Wu, P., Li, T., Konecný, J., McMahan, H.B., Smith, V., Talwalkar, A.: LEAF: a benchmark for federated settings. In: NeurIPS Workshop (2019)
6.
go back to reference Cao, L.: Decentralized AI: edge intelligence and smart blockchain, metaverse, Web3, and DeSci. IEEE Intell. Syst. 37, 6–19 (2022) Cao, L.: Decentralized AI: edge intelligence and smart blockchain, metaverse, Web3, and DeSci. IEEE Intell. Syst. 37, 6–19 (2022)
7.
go back to reference Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: BlockFLA: Accountable federated learning via hybrid blockchain architecture. In: CODASPY (2021) Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: BlockFLA: Accountable federated learning via hybrid blockchain architecture. In: CODASPY (2021)
8.
go back to reference Dirir, A.M., Salah, K., Svetinovic, D., Jayaraman, R., Yaqoob, I., Kanhere, S.S.: Blockchain-based decentralized federated learning. In: BCCA pp. 99–106 (2022) Dirir, A.M., Salah, K., Svetinovic, D., Jayaraman, R., Yaqoob, I., Kanhere, S.S.: Blockchain-based decentralized federated learning. In: BCCA pp. 99–106 (2022)
9.
go back to reference Fan, S., Zhang, H., Wang, Z., Cai, W.: Mobile devices strategies in blockchain-based federated learning: a dynamic game perspective. In: IEEE TNSE, pp. 1–13 (2022) Fan, S., Zhang, H., Wang, Z., Cai, W.: Mobile devices strategies in blockchain-based federated learning: a dynamic game perspective. In: IEEE TNSE, pp. 1–13 (2022)
10.
go back to reference Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IOT 8, 2252–2264 (2021) Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IOT 8, 2252–2264 (2021)
11.
go back to reference Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., Peng, Y.: BAFL: a blockchain-based asynchronous federated learning framework. IEEE Trans. Comput. 71, 1092–1103 (2022)CrossRef Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., Peng, Y.: BAFL: a blockchain-based asynchronous federated learning framework. IEEE Trans. Comput. 71, 1092–1103 (2022)CrossRef
12.
go back to reference Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP, pp. 51–68 (2017) Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP, pp. 51–68 (2017)
13.
go back to reference Issa, W., Moustafa, N., Turnbull, B.P., Sohrabi, N., Tari, Z.: Blockchain-based federated learning for securing internet of things: a comprehensive survey. ACM Comput. Surv. 1–37 (2022) Issa, W., Moustafa, N., Turnbull, B.P., Sohrabi, N., Tari, Z.: Blockchain-based federated learning for securing internet of things: a comprehensive survey. ACM Comput. Surv. 1–37 (2022)
14.
go back to reference Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML (2020) Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML (2020)
15.
go back to reference Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24, 1279–1283 (2020)CrossRef Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24, 1279–1283 (2020)CrossRef
16.
go back to reference Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, pp. 1–60 (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, pp. 1–60 (2009)
17.
go back to reference Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learning through personalization. In: ICML (2021) Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learning through personalization. In: ICML (2021)
18.
go back to reference Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys, vol. 2, pp. 429–450 (2020) Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys, vol. 2, pp. 429–450 (2020)
19.
go back to reference Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35, 234–241 (2021)CrossRef Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35, 234–241 (2021)CrossRef
20.
go back to reference Liu, Y., Qu, Y., Xu, C., Hao, Z., Gu, B.: Blockchain-enabled asynchronous federated learning in edge computing. Sensors 21, 1–16 (2021) Liu, Y., Qu, Y., Xu, C., Hao, Z., Gu, B.: Blockchain-enabled asynchronous federated learning in edge computing. Sensors 21, 1–16 (2021)
21.
go back to reference Lu, Y., Tang, Q., Wang, G.: On enabling machine learning tasks atop public blockchains: a crowdsourcing approach. In: ICDMW, pp. 81–88 (2018) Lu, Y., Tang, Q., Wang, G.: On enabling machine learning tasks atop public blockchains: a crowdsourcing approach. In: ICDMW, pp. 81–88 (2018)
22.
go back to reference Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based on multi-key homomorphic encryption. IJIS 37, 5880–5901 (2021) Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based on multi-key homomorphic encryption. IJIS 37, 5880–5901 (2021)
23.
go back to reference Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010) Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)
24.
go back to reference McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, vol. 54, pp. 1273–1282 (2017) McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, vol. 54, pp. 1273–1282 (2017)
25.
go back to reference Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, pp. 120–130 (1999) Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, pp. 120–130 (1999)
26.
go back to reference Ming, W.Y., Hao, L.G., Yu, F.L., Mao, P.: Research on block chain defense against malicious attack in federated learning. In: ICBCT (2021) Ming, W.Y., Hao, L.G., Yu, F.L., Mao, P.: Research on block chain defense against malicious attack in federated learning. In: ICBCT (2021)
27.
go back to reference Moudoud, H., Cherkaoui, S., Khoukhi, L.: Towards a secure and reliable federated learning using blockchain. In: IEEE GLOBECOM, pp. 1–6 (2021) Moudoud, H., Cherkaoui, S., Khoukhi, L.: Towards a secure and reliable federated learning using blockchain. In: IEEE GLOBECOM, pp. 1–6 (2021)
28.
go back to reference Mugunthan, V., Rahman, R., Kagal, L.: Blockflow: Decentralized, privacy-preserving, and accountable federated machine learning. BLOCKCHAIN 320 (2021) Mugunthan, V., Rahman, R., Kagal, L.: Blockflow: Decentralized, privacy-preserving, and accountable federated machine learning. BLOCKCHAIN 320 (2021)
29.
go back to reference Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008) Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
30.
go back to reference Nelaturu, K., Beillahi, S.M., Long, F., Veneris, A.G.: Smart contracts refinement for gas optimization. In: BRAINS, pp. 229–236 (2021) Nelaturu, K., Beillahi, S.M., Long, F., Veneris, A.G.: Smart contracts refinement for gas optimization. In: BRAINS, pp. 229–236 (2021)
31.
go back to reference Nguyen, Q.T., Do, B.S., Nguyen, T.T., Do, B.L.: GasSaver: a tool for solidity smart contract optimization. In: ACM BSCI (2022) Nguyen, Q.T., Do, B.S., Nguyen, T.T., Do, B.L.: GasSaver: a tool for solidity smart contract optimization. In: ACM BSCI (2022)
33.
go back to reference Park, J., Lim, H.K.: Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. (2022) Park, J., Lim, H.K.: Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. (2022)
34.
go back to reference Ramanan, P., Nakayama, K., Sharma, R.K.: Baffle: blockchain based aggregator free federated learning. In: IEEE Blockchain, pp. 72–81 (2020) Ramanan, P., Nakayama, K., Sharma, R.K.: Baffle: blockchain based aggregator free federated learning. In: IEEE Blockchain, pp. 72–81 (2020)
35.
go back to reference Saldanha, O.L., Quirke, P., West, N.P., Jacqueline, A., James, E.: Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28, 1232–1239 (2021)CrossRef Saldanha, O.L., Quirke, P., West, N.P., Jacqueline, A., James, E.: Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28, 1232–1239 (2021)CrossRef
36.
go back to reference Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)CrossRef Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)CrossRef
37.
go back to reference Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M., Do, L., Kopp, M.: Asynchronous federated learning for geospatial applications. In: ECML PKDD, pp. 21–28 (2019) Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M., Do, L., Kopp, M.: Asynchronous federated learning for geospatial applications. In: ECML PKDD, pp. 21–28 (2019)
38.
go back to reference Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020) Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020)
39.
go back to reference Warnat-Herresthal, S., Schultze, H., Shastry, K., Sathyanarayanan Manamohan, E.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021)CrossRef Warnat-Herresthal, S., Schultze, H., Shastry, K., Sathyanarayanan Manamohan, E.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021)CrossRef
42.
go back to reference Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. TDSC 18(5), 2438–2455 (2021) Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. TDSC 18(5), 2438–2455 (2021)
43.
go back to reference Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014) Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
44.
go back to reference Xie, C., Koyejo, O., Gupta, I.: Asynchronous federated optimization. In: OPT (2019) Xie, C., Koyejo, O., Gupta, I.: Asynchronous federated optimization. In: OPT (2019)
45.
go back to reference Xu, C., Qu, Y., Eklund, P.W., Xiang, Y., Gao, L.: BAFL: an efficient blockchain-based asynchronous federated learning framework. In: ISCC, pp. 1–6 (2021) Xu, C., Qu, Y., Eklund, P.W., Xiang, Y., Gao, L.: BAFL: an efficient blockchain-based asynchronous federated learning framework. In: ISCC, pp. 1–6 (2021)
46.
go back to reference Byzantine-robust distributed learning: Yin, D., Chen, Y., Kannan, R., Bartlett, P. Towards optimal statistical rates. In: ICML, vol. 80, pp. 5650–5659 (2018) Byzantine-robust distributed learning: Yin, D., Chen, Y., Kannan, R., Bartlett, P. Towards optimal statistical rates. In: ICML, vol. 80, pp. 5650–5659 (2018)
47.
go back to reference Yuan, S., Cao, B., Peng, M., Sun, Y.: ChainsFL: blockchain-driven federated learning from design to realization. In: IEEE WCNC, pp. 1–6 (2021) Yuan, S., Cao, B., Peng, M., Sun, Y.: ChainsFL: blockchain-driven federated learning from design to realization. In: IEEE WCNC, pp. 1–6 (2021)
48.
go back to reference Zhang, Z., Dong, D., Ma, Y., Ying, Y., Jiang, D., Chen, K., Shou, L.: Refiner: a reliable incentive-driven federated learning system powered by blockchain. PVLDB 14, 2659–2662 (2021) Zhang, Z., Dong, D., Ma, Y., Ying, Y., Jiang, D., Chen, K., Shou, L.: Refiner: a reliable incentive-driven federated learning system powered by blockchain. PVLDB 14, 2659–2662 (2021)
Metadata
Title
Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain
Authors
Hong Lin
Ke Chen
Dawei Jiang
Lidan Shou
Gang Chen
Publication date
28-02-2024
Publisher
Springer Berlin Heidelberg
Published in
The VLDB Journal / Issue 3/2024
Print ISSN: 1066-8888
Electronic ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-024-00839-y

Other articles of this Issue 3/2024

The VLDB Journal 3/2024 Go to the issue

Premium Partner