Skip to main content
Erschienen in: The VLDB Journal 3/2024

28.02.2024 | Regular Paper

Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain

verfasst von: Hong Lin, Ke Chen, Dawei Jiang, Lidan Shou, Gang Chen

Erschienen in: The VLDB Journal | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Federated learning (FL) enables learning a model from data distributed across numerous workers while preserving data privacy. However, the classical FL technique is designed for Web2 applications where participants are trusted to produce correct computation results. Moreover, classical FL workers are assumed to voluntarily contribute their computational resources and have the same learning speed. Therefore, the classical FL technique is not applicable to Web3 applications, where participants are untrusted and self-interested players with potentially malicious behaviors and heterogeneous learning speeds. This paper proposes Refiner, a novel blockchain-powered decentralized FL system for Web3 applications. Refiner addresses the challenges introduced by Web3 participants by extending the classical FL technique with three interoperative extensions: (1) an incentive scheme for attracting self-interested participants, (2) a two-stage audit scheme for preventing malicious behavior, and (3) an incentive-aware semi-synchronous learning scheme for handling heterogeneous workers. We provide theoretical analyses of the security and efficiency of Refiner. Extensive experimental results on the CIFAR-10 and Shakespeare datasets confirm the effectiveness, security, and efficiency of Refiner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, vol. 108, pp. 2938–2948 (2020) Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, vol. 108, pp. 2938–2948 (2020)
2.
Zurück zum Zitat Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: ICML, vol. 97, pp. 634–643 (2019) Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: ICML, vol. 97, pp. 634–643 (2019)
3.
Zurück zum Zitat Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: NeurIPS (2017) Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: NeurIPS (2017)
4.
Zurück zum Zitat Buterin, V.: A next-generation smart contract and decentralized application platform (2014) Buterin, V.: A next-generation smart contract and decentralized application platform (2014)
5.
Zurück zum Zitat Caldas, S., Wu, P., Li, T., Konecný, J., McMahan, H.B., Smith, V., Talwalkar, A.: LEAF: a benchmark for federated settings. In: NeurIPS Workshop (2019) Caldas, S., Wu, P., Li, T., Konecný, J., McMahan, H.B., Smith, V., Talwalkar, A.: LEAF: a benchmark for federated settings. In: NeurIPS Workshop (2019)
6.
Zurück zum Zitat Cao, L.: Decentralized AI: edge intelligence and smart blockchain, metaverse, Web3, and DeSci. IEEE Intell. Syst. 37, 6–19 (2022) Cao, L.: Decentralized AI: edge intelligence and smart blockchain, metaverse, Web3, and DeSci. IEEE Intell. Syst. 37, 6–19 (2022)
7.
Zurück zum Zitat Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: BlockFLA: Accountable federated learning via hybrid blockchain architecture. In: CODASPY (2021) Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: BlockFLA: Accountable federated learning via hybrid blockchain architecture. In: CODASPY (2021)
8.
Zurück zum Zitat Dirir, A.M., Salah, K., Svetinovic, D., Jayaraman, R., Yaqoob, I., Kanhere, S.S.: Blockchain-based decentralized federated learning. In: BCCA pp. 99–106 (2022) Dirir, A.M., Salah, K., Svetinovic, D., Jayaraman, R., Yaqoob, I., Kanhere, S.S.: Blockchain-based decentralized federated learning. In: BCCA pp. 99–106 (2022)
9.
Zurück zum Zitat Fan, S., Zhang, H., Wang, Z., Cai, W.: Mobile devices strategies in blockchain-based federated learning: a dynamic game perspective. In: IEEE TNSE, pp. 1–13 (2022) Fan, S., Zhang, H., Wang, Z., Cai, W.: Mobile devices strategies in blockchain-based federated learning: a dynamic game perspective. In: IEEE TNSE, pp. 1–13 (2022)
10.
Zurück zum Zitat Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IOT 8, 2252–2264 (2021) Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IOT 8, 2252–2264 (2021)
11.
Zurück zum Zitat Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., Peng, Y.: BAFL: a blockchain-based asynchronous federated learning framework. IEEE Trans. Comput. 71, 1092–1103 (2022)CrossRef Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., Peng, Y.: BAFL: a blockchain-based asynchronous federated learning framework. IEEE Trans. Comput. 71, 1092–1103 (2022)CrossRef
12.
Zurück zum Zitat Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP, pp. 51–68 (2017) Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP, pp. 51–68 (2017)
13.
Zurück zum Zitat Issa, W., Moustafa, N., Turnbull, B.P., Sohrabi, N., Tari, Z.: Blockchain-based federated learning for securing internet of things: a comprehensive survey. ACM Comput. Surv. 1–37 (2022) Issa, W., Moustafa, N., Turnbull, B.P., Sohrabi, N., Tari, Z.: Blockchain-based federated learning for securing internet of things: a comprehensive survey. ACM Comput. Surv. 1–37 (2022)
14.
Zurück zum Zitat Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML (2020) Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML (2020)
15.
Zurück zum Zitat Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24, 1279–1283 (2020)CrossRef Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24, 1279–1283 (2020)CrossRef
16.
Zurück zum Zitat Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, pp. 1–60 (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, pp. 1–60 (2009)
17.
Zurück zum Zitat Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learning through personalization. In: ICML (2021) Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learning through personalization. In: ICML (2021)
18.
Zurück zum Zitat Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys, vol. 2, pp. 429–450 (2020) Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys, vol. 2, pp. 429–450 (2020)
19.
Zurück zum Zitat Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35, 234–241 (2021)CrossRef Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35, 234–241 (2021)CrossRef
20.
Zurück zum Zitat Liu, Y., Qu, Y., Xu, C., Hao, Z., Gu, B.: Blockchain-enabled asynchronous federated learning in edge computing. Sensors 21, 1–16 (2021) Liu, Y., Qu, Y., Xu, C., Hao, Z., Gu, B.: Blockchain-enabled asynchronous federated learning in edge computing. Sensors 21, 1–16 (2021)
21.
Zurück zum Zitat Lu, Y., Tang, Q., Wang, G.: On enabling machine learning tasks atop public blockchains: a crowdsourcing approach. In: ICDMW, pp. 81–88 (2018) Lu, Y., Tang, Q., Wang, G.: On enabling machine learning tasks atop public blockchains: a crowdsourcing approach. In: ICDMW, pp. 81–88 (2018)
22.
Zurück zum Zitat Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based on multi-key homomorphic encryption. IJIS 37, 5880–5901 (2021) Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based on multi-key homomorphic encryption. IJIS 37, 5880–5901 (2021)
23.
Zurück zum Zitat Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010) Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)
24.
Zurück zum Zitat McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, vol. 54, pp. 1273–1282 (2017) McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, vol. 54, pp. 1273–1282 (2017)
25.
Zurück zum Zitat Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, pp. 120–130 (1999) Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, pp. 120–130 (1999)
26.
Zurück zum Zitat Ming, W.Y., Hao, L.G., Yu, F.L., Mao, P.: Research on block chain defense against malicious attack in federated learning. In: ICBCT (2021) Ming, W.Y., Hao, L.G., Yu, F.L., Mao, P.: Research on block chain defense against malicious attack in federated learning. In: ICBCT (2021)
27.
Zurück zum Zitat Moudoud, H., Cherkaoui, S., Khoukhi, L.: Towards a secure and reliable federated learning using blockchain. In: IEEE GLOBECOM, pp. 1–6 (2021) Moudoud, H., Cherkaoui, S., Khoukhi, L.: Towards a secure and reliable federated learning using blockchain. In: IEEE GLOBECOM, pp. 1–6 (2021)
28.
Zurück zum Zitat Mugunthan, V., Rahman, R., Kagal, L.: Blockflow: Decentralized, privacy-preserving, and accountable federated machine learning. BLOCKCHAIN 320 (2021) Mugunthan, V., Rahman, R., Kagal, L.: Blockflow: Decentralized, privacy-preserving, and accountable federated machine learning. BLOCKCHAIN 320 (2021)
29.
Zurück zum Zitat Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008) Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
30.
Zurück zum Zitat Nelaturu, K., Beillahi, S.M., Long, F., Veneris, A.G.: Smart contracts refinement for gas optimization. In: BRAINS, pp. 229–236 (2021) Nelaturu, K., Beillahi, S.M., Long, F., Veneris, A.G.: Smart contracts refinement for gas optimization. In: BRAINS, pp. 229–236 (2021)
31.
Zurück zum Zitat Nguyen, Q.T., Do, B.S., Nguyen, T.T., Do, B.L.: GasSaver: a tool for solidity smart contract optimization. In: ACM BSCI (2022) Nguyen, Q.T., Do, B.S., Nguyen, T.T., Do, B.L.: GasSaver: a tool for solidity smart contract optimization. In: ACM BSCI (2022)
33.
Zurück zum Zitat Park, J., Lim, H.K.: Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. (2022) Park, J., Lim, H.K.: Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. (2022)
34.
Zurück zum Zitat Ramanan, P., Nakayama, K., Sharma, R.K.: Baffle: blockchain based aggregator free federated learning. In: IEEE Blockchain, pp. 72–81 (2020) Ramanan, P., Nakayama, K., Sharma, R.K.: Baffle: blockchain based aggregator free federated learning. In: IEEE Blockchain, pp. 72–81 (2020)
35.
Zurück zum Zitat Saldanha, O.L., Quirke, P., West, N.P., Jacqueline, A., James, E.: Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28, 1232–1239 (2021)CrossRef Saldanha, O.L., Quirke, P., West, N.P., Jacqueline, A., James, E.: Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28, 1232–1239 (2021)CrossRef
36.
Zurück zum Zitat Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)CrossRef Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)CrossRef
37.
Zurück zum Zitat Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M., Do, L., Kopp, M.: Asynchronous federated learning for geospatial applications. In: ECML PKDD, pp. 21–28 (2019) Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M., Do, L., Kopp, M.: Asynchronous federated learning for geospatial applications. In: ECML PKDD, pp. 21–28 (2019)
38.
Zurück zum Zitat Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020) Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020)
39.
Zurück zum Zitat Warnat-Herresthal, S., Schultze, H., Shastry, K., Sathyanarayanan Manamohan, E.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021)CrossRef Warnat-Herresthal, S., Schultze, H., Shastry, K., Sathyanarayanan Manamohan, E.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021)CrossRef
42.
Zurück zum Zitat Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. TDSC 18(5), 2438–2455 (2021) Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. TDSC 18(5), 2438–2455 (2021)
43.
Zurück zum Zitat Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014) Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
44.
Zurück zum Zitat Xie, C., Koyejo, O., Gupta, I.: Asynchronous federated optimization. In: OPT (2019) Xie, C., Koyejo, O., Gupta, I.: Asynchronous federated optimization. In: OPT (2019)
45.
Zurück zum Zitat Xu, C., Qu, Y., Eklund, P.W., Xiang, Y., Gao, L.: BAFL: an efficient blockchain-based asynchronous federated learning framework. In: ISCC, pp. 1–6 (2021) Xu, C., Qu, Y., Eklund, P.W., Xiang, Y., Gao, L.: BAFL: an efficient blockchain-based asynchronous federated learning framework. In: ISCC, pp. 1–6 (2021)
46.
Zurück zum Zitat Byzantine-robust distributed learning: Yin, D., Chen, Y., Kannan, R., Bartlett, P. Towards optimal statistical rates. In: ICML, vol. 80, pp. 5650–5659 (2018) Byzantine-robust distributed learning: Yin, D., Chen, Y., Kannan, R., Bartlett, P. Towards optimal statistical rates. In: ICML, vol. 80, pp. 5650–5659 (2018)
47.
Zurück zum Zitat Yuan, S., Cao, B., Peng, M., Sun, Y.: ChainsFL: blockchain-driven federated learning from design to realization. In: IEEE WCNC, pp. 1–6 (2021) Yuan, S., Cao, B., Peng, M., Sun, Y.: ChainsFL: blockchain-driven federated learning from design to realization. In: IEEE WCNC, pp. 1–6 (2021)
48.
Zurück zum Zitat Zhang, Z., Dong, D., Ma, Y., Ying, Y., Jiang, D., Chen, K., Shou, L.: Refiner: a reliable incentive-driven federated learning system powered by blockchain. PVLDB 14, 2659–2662 (2021) Zhang, Z., Dong, D., Ma, Y., Ying, Y., Jiang, D., Chen, K., Shou, L.: Refiner: a reliable incentive-driven federated learning system powered by blockchain. PVLDB 14, 2659–2662 (2021)
Metadaten
Titel
Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain
verfasst von
Hong Lin
Ke Chen
Dawei Jiang
Lidan Shou
Gang Chen
Publikationsdatum
28.02.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
The VLDB Journal / Ausgabe 3/2024
Print ISSN: 1066-8888
Elektronische ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-024-00839-y

Weitere Artikel der Ausgabe 3/2024

The VLDB Journal 3/2024 Zur Ausgabe

Regular Paper

MM-DIRECT