Skip to main content
Top
Published in: The VLDB Journal 3/2024

15-03-2024 | Regular Paper

How good are machine learning clouds? Benchmarking two snapshots over 5 years

Authors: Jiawei Jiang, Yi Wei, Yu Liu, Wentao Wu, Chuang Hu, Zhigao Zheng, Ziyi Zhang, Yingxia Shao, Ce Zhang

Published in: The VLDB Journal | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We conduct an empirical study of machine learning functionalities provided by major cloud service providers, which we call machine learning clouds. Machine learning clouds hold the promise of hiding all the sophistication of running large-scale machine learning: Instead of specifying how to run a machine learning task, users only specify what machine learning task to run and the cloud figures out the rest. Raising the level of abstraction, however, rarely comes free—a performance penalty is possible. How good, then, are current machine learning clouds on real-world machine learning workloads? We study this question by conducting benchmark on the mainstream machine learning clouds. Since these platforms continue to innovate, our benchmark tries to reflect their evolvement. Concretely, this paper consists of two sub-benchmarks—mlbench and automlbench. When we first started this work in 2016, only two cloud platforms provide machine learning services and limited themselves to model training and simple hyper-parameter tuning. We then focus on binary classification problems and present mlbench, a novel benchmark constructed by harvesting datasets from Kaggle competitions. We then compare the performance of the top winning code available from Kaggle with that of running machine learning clouds from both Azure and Amazon on mlbench. In the recent few years, more cloud providers support machine learning and include automatic machine learning (AutoML) techniques in their machine learning clouds. Their AutoML services can ease manual tuning on the whole machine learning pipeline, including but not limited to data preprocessing, feature selection, model selection, hyper-parameter, and model ensemble. To reflect these advancements, we design automlbench to assess the AutoML performance of four machine learning clouds using different kinds of workloads. Our comparative study reveals the strength and weakness of existing machine learning clouds and points out potential future directions for improvement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Aguilar Melgar, L., et al.: Ease.ml: a lifecycle management system for machine learning. In: 11th Annual Conference on Innovative Data Systems Research (CIDR 2021) (virtual). CIDR (2021) Aguilar Melgar, L., et al.: Ease.ml: a lifecycle management system for machine learning. In: 11th Annual Conference on Innovative Data Systems Research (CIDR 2021) (virtual). CIDR (2021)
8.
go back to reference Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36, 105–139 (1998)CrossRef Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36, 105–139 (1998)CrossRef
9.
go back to reference Bergstra, J., et al.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in science conference, vol. 13, p. 20. Citeseer (2013) Bergstra, J., et al.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in science conference, vol. 13, p. 20. Citeseer (2013)
10.
go back to reference Caruana, R., et al.: An empirical comparison of supervised learning algorithms. In: ICML (2006) Caruana, R., et al.: An empirical comparison of supervised learning algorithms. In: ICML (2006)
11.
go back to reference Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: SoCC (2010) Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: SoCC (2010)
12.
go back to reference Cortes, C., Vapnik, V.: Support-vector networks. Mach Learn 20, 273–297 (1995)CrossRef Cortes, C., Vapnik, V.: Support-vector networks. Mach Learn 20, 273–297 (1995)CrossRef
13.
go back to reference DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The Benchmark Handbook for Database and Transaction Systems (1993) DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The Benchmark Handbook for Database and Transaction Systems (1993)
14.
go back to reference Domingos, P.: A few useful things to know about machine learning. In: CACM (2012) Domingos, P.: A few useful things to know about machine learning. In: CACM (2012)
15.
go back to reference Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A.: Autogluon-tabular: robust and accurate automl for structured data. arXiv:2003.06505 (2020) Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A.: Autogluon-tabular: robust and accurate automl for structured data. arXiv:​2003.​06505 (2020)
16.
go back to reference Fernández-Delgado, M., et al.: Do we need hundreds of classifiers to solve real world classification problems. In: JMLR (2014) Fernández-Delgado, M., et al.: Do we need hundreds of classifiers to solve real world classification problems. In: JMLR (2014)
17.
go back to reference Feurer, M., et al.: Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015) Feurer, M., et al.: Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
18.
go back to reference Feurer, M., et al.: Auto-sklearn: efficient and robust automated machine learning. In: Automated Machine Learning, pp. 113–134 (2019) Feurer, M., et al.: Auto-sklearn: efficient and robust automated machine learning. In: Automated Machine Learning, pp. 113–134 (2019)
19.
go back to reference Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: JCSS (1997) Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: JCSS (1997)
20.
go back to reference Fusi, N., et al.: Probabilistic matrix factorization for automated machine learning. Adv. Neural Inf. Process. Syst. 31, 3348–3357 (2018) Fusi, N., et al.: Probabilistic matrix factorization for automated machine learning. Adv. Neural Inf. Process. Syst. 31, 3348–3357 (2018)
21.
go back to reference Gomes, T.A., et al.: Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75(1), 3–13 (2012)CrossRef Gomes, T.A., et al.: Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75(1), 3–13 (2012)CrossRef
23.
go back to reference Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Hoboken (1998) Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Hoboken (1998)
24.
go back to reference He, X., et al.: Automl: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)CrossRef He, X., et al.: Automl: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)CrossRef
25.
go back to reference Herbrich, R., et al.: Bayes point machines. In: JMLR (2001) Herbrich, R., et al.: Bayes point machines. In: JMLR (2001)
26.
go back to reference Ho, T.K.: Random decision forests. In: ICDAR (1995) Ho, T.K.: Random decision forests. In: ICDAR (1995)
27.
go back to reference Hutter, F., et al.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523. Springer (2011) Hutter, F., et al.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523. Springer (2011)
28.
go back to reference Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic, A., Singla, A., Wu, W., Zhang, C.: Towards demystifying serverless machine learning training. In: Proceedings of the 2021 International Conference on Management of Data, pp. 857–871 (2021) Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic, A., Singla, A., Wu, W., Zhang, C.: Towards demystifying serverless machine learning training. In: Proceedings of the 2021 International Conference on Management of Data, pp. 857–871 (2021)
29.
go back to reference Kotthoff, L., et al.: Auto-weka: automatic model selection and hyperparameter optimization in weka. In: Automated Machine Learning, pp. 81–95. Springer, Cham (2019) Kotthoff, L., et al.: Auto-weka: automatic model selection and hyperparameter optimization in weka. In: Automated Machine Learning, pp. 81–95. Springer, Cham (2019)
30.
go back to reference LeDell, E., Poirier, S.: H2o automl: scalable automatic machine learning. In: Proceedings of the AutoML Workshop at ICML (2020) LeDell, E., Poirier, S.: H2o automl: scalable automatic machine learning. In: Proceedings of the AutoML Workshop at ICML (2020)
31.
go back to reference Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)MathSciNet Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)MathSciNet
32.
go back to reference Li, P., et al.: Cleanml: a study for evaluating the impact of data cleaning on ml classification tasks. In: 36th IEEE International Conference on Data Engineering (ICDE 2020) (virtual) (2021) Li, P., et al.: Cleanml: a study for evaluating the impact of data cleaning on ml classification tasks. In: 36th IEEE International Conference on Data Engineering (ICDE 2020) (virtual) (2021)
33.
go back to reference Li, Y., Shen, Y., Zhang, W., Zhang, C., Cui, B.: Volcanoml: speeding up end-to-end automl via scalable search space decomposition. VLDB J. 32(2), 389–413 (2023)CrossRef Li, Y., Shen, Y., Zhang, W., Zhang, C., Cui, B.: Volcanoml: speeding up end-to-end automl via scalable search space decomposition. VLDB J. 32(2), 389–413 (2023)CrossRef
34.
go back to reference Liu, Y., et al.: MLbench: benchmarking machine learning services against human experts. Proc. VLDB Endow. 11(10), 1220–1232 (2018)CrossRef Liu, Y., et al.: MLbench: benchmarking machine learning services against human experts. Proc. VLDB Endow. 11(10), 1220–1232 (2018)CrossRef
35.
go back to reference Luo, C., et al.: Cloudrank-d: benchmarking and ranking cloud computing systems for data processing applications. Front. Comput. Sci. 6, 347–362 (2012)MathSciNetCrossRef Luo, C., et al.: Cloudrank-d: benchmarking and ranking cloud computing systems for data processing applications. Front. Comput. Sci. 6, 347–362 (2012)MathSciNetCrossRef
37.
go back to reference Olson, R.S., Moore, J.H.: Tpot: a tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016) Olson, R.S., Moore, J.H.: Tpot: a tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016)
38.
go back to reference Olson, R.S., et al.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 485–492 (2016) Olson, R.S., et al.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 485–492 (2016)
40.
go back to reference Perrone, V., Shen, H., Seeger, M.W., Archambeau, C., Jenatton, R.: Learning search spaces for Bayesian optimization: another view of hyperparameter transfer learning. Adv. Neural Inf. Process. Syst. 32 (2019) Perrone, V., Shen, H., Seeger, M.W., Archambeau, C., Jenatton, R.: Learning search spaces for Bayesian optimization: another view of hyperparameter transfer learning. Adv. Neural Inf. Process. Syst. 32 (2019)
41.
go back to reference Quinlan, J.R.: Induction of decision trees. Mach. Learn. (1986) Quinlan, J.R.: Induction of decision trees. Mach. Learn. (1986)
42.
go back to reference Reif, M., et al.: Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 87(3), 357–380 (2012)MathSciNetCrossRef Reif, M., et al.: Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 87(3), 357–380 (2012)MathSciNetCrossRef
43.
go back to reference Shotton, J., et al.: Decision jungles: compact and rich models for classification. In: NIPS (2013) Shotton, J., et al.: Decision jungles: compact and rich models for classification. In: NIPS (2013)
44.
go back to reference Sun-Hosoya, L., et al.: Activmetal: algorithm recommendation with active meta learning. In: IAL 2018 workshop, ECML PKDD (2018) Sun-Hosoya, L., et al.: Activmetal: algorithm recommendation with active meta learning. In: IAL 2018 workshop, ECML PKDD (2018)
45.
go back to reference Thornton, C., et al.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855 (2013) Thornton, C., et al.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855 (2013)
46.
go back to reference Wong, C., et al.: Transfer learning with neural automl. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 8366–8375 (2018) Wong, C., et al.: Transfer learning with neural automl. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 8366–8375 (2018)
47.
go back to reference Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., Pande, V.: Moleculenet: a benchmark for molecular machine learning. Chem. Sci. 9(2), 513–530 (2018) Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., Pande, V.: Moleculenet: a benchmark for molecular machine learning. Chem. Sci. 9(2), 513–530 (2018)
48.
go back to reference Yakovlev, A., et al.: Oracle automl: a fast and predictive automl pipeline. Proc. VLDB Endow. 13(12), 3166–3180 (2020) Yakovlev, A., et al.: Oracle automl: a fast and predictive automl pipeline. Proc. VLDB Endow. 13(12), 3166–3180 (2020)
49.
go back to reference Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial Intelligence and Statistics, pp. 1077–1085. PMLR (2014) Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial Intelligence and Statistics, pp. 1077–1085. PMLR (2014)
50.
go back to reference Zhang, C., et al.: An overreaction to the broken machine learning abstraction: the ease.ml vision. In: HILDA (2017) Zhang, C., et al.: An overreaction to the broken machine learning abstraction: the ease.ml vision. In: HILDA (2017)
51.
go back to reference Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)MathSciNetCrossRef Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)MathSciNetCrossRef
Metadata
Title
How good are machine learning clouds? Benchmarking two snapshots over 5 years
Authors
Jiawei Jiang
Yi Wei
Yu Liu
Wentao Wu
Chuang Hu
Zhigao Zheng
Ziyi Zhang
Yingxia Shao
Ce Zhang
Publication date
15-03-2024
Publisher
Springer Berlin Heidelberg
Published in
The VLDB Journal / Issue 3/2024
Print ISSN: 1066-8888
Electronic ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-024-00842-3

Other articles of this Issue 3/2024

The VLDB Journal 3/2024 Go to the issue

Regular Paper

MM-DIRECT

Premium Partner