Skip to main content
Top
Published in: Engineering with Computers 1/2023

15-02-2022 | Original Article

A new iterative technique for solving fractal-fractional differential equations based on artificial neural network in the new generalized Caputo sense

Authors: A. M. Shloof, N. Senu, A. Ahmadian, M. Pakdaman, S. Salahshour

Published in: Engineering with Computers | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper attempts to create an artificial neural networks (ANNs) technique for solving well-known fractal-fractional differential equations (FFDEs). FFDEs have the advantage of being able to help explain a variety of real-world physical problems. The technique implemented in this paper converts the original differential equation into a minimization problem using a suggested truncated power series of the solution function. Next, answer to the problem is obtained via computing the parameters with highly precise neural network model. We can get a good approximate solution of FFDEs by combining the initial conditions with the ANNs performance. Examples are provided to portray the efficiency and applicability of this method. Comparison with similar existing approaches are also conducted to demonstrate the accuracy of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jain S, Agarwal P (2012) On applications of fractional calculus involving summations of series. In: Applied mathematics & approximation theory, May 17–20, 2012–Ankara–Turkey, p 96 Jain S, Agarwal P (2012) On applications of fractional calculus involving summations of series. In: Applied mathematics & approximation theory, May 17–20, 2012–Ankara–Turkey, p 96
2.
3.
go back to reference Baleanu D, Güvenç ZB, Machado T et al (2010) New trends in nanotechnology and fractional calculus applications. Springer, BerlinCrossRefMATH Baleanu D, Güvenç ZB, Machado T et al (2010) New trends in nanotechnology and fractional calculus applications. Springer, BerlinCrossRefMATH
4.
go back to reference Mohammed PO, Abdeljawad T, Baleanu D, Kashuri A, Hamasalh F, Agarwal P (2020) New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions. J Inequalities Appl 2020(1):1–16MathSciNetMATH Mohammed PO, Abdeljawad T, Baleanu D, Kashuri A, Hamasalh F, Agarwal P (2020) New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions. J Inequalities Appl 2020(1):1–16MathSciNetMATH
6.
go back to reference Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods, vol 3. World Scientific, SingaporeMATH Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods, vol 3. World Scientific, SingaporeMATH
7.
go back to reference Valério D, Machado JT, Kiryakova V (2014) Some pioneers of the applications of fractional calculus. Fract Calc Appl Anal 17(2):552–578MathSciNetCrossRefMATH Valério D, Machado JT, Kiryakova V (2014) Some pioneers of the applications of fractional calculus. Fract Calc Appl Anal 17(2):552–578MathSciNetCrossRefMATH
8.
go back to reference Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102:396–406MathSciNetCrossRefMATH Atangana A (2017) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102:396–406MathSciNetCrossRefMATH
9.
go back to reference Shloof A, Senu N, Ahmadian A, Salahshour S (2021) An efficient operation matrix method for solving fractal-fractional differential equations with generalized caputo-type fractional-fractal derivative. Math Comput Simul 188:415–435MathSciNetCrossRefMATH Shloof A, Senu N, Ahmadian A, Salahshour S (2021) An efficient operation matrix method for solving fractal-fractional differential equations with generalized caputo-type fractional-fractal derivative. Math Comput Simul 188:415–435MathSciNetCrossRefMATH
10.
go back to reference Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNetMATH Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNetMATH
11.
go back to reference Zúñiga-Aguilar CJ, Romero-Ugalde HM, Gómez-Aguilar JF, Escobar-Jiménez RF, Valtierra-Rodríguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fractals 103:382–403MathSciNetCrossRefMATH Zúñiga-Aguilar CJ, Romero-Ugalde HM, Gómez-Aguilar JF, Escobar-Jiménez RF, Valtierra-Rodríguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fractals 103:382–403MathSciNetCrossRefMATH
12.
go back to reference Jafarian A, Rostami F, Golmankhaneh AK, Baleanu D (2017) Using ANNs approach for solving fractional order Volterra integro-differential equations. International Journal of Computational Intelligence Systems 10(1):470–480CrossRef Jafarian A, Rostami F, Golmankhaneh AK, Baleanu D (2017) Using ANNs approach for solving fractional order Volterra integro-differential equations. International Journal of Computational Intelligence Systems 10(1):470–480CrossRef
13.
go back to reference Chakraverty S, Mall S (2014) Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25(3):585–594CrossRef Chakraverty S, Mall S (2014) Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25(3):585–594CrossRef
14.
go back to reference Mall S, Chakraverty S (2016) Application of legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356CrossRef Mall S, Chakraverty S (2016) Application of legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356CrossRef
15.
go back to reference Mall S, Chakraverty S (2016) Hermite functional link neural network for solving the van der pol-duffing oscillator equation. Neural Comput 28(8):1574–1598MathSciNetCrossRefMATH Mall S, Chakraverty S (2016) Hermite functional link neural network for solving the van der pol-duffing oscillator equation. Neural Comput 28(8):1574–1598MathSciNetCrossRefMATH
16.
go back to reference Mall S, Chakraverty S (2014) Chebyshev neural network based model for solving Lane-Emden type equations. Appl Math Comput 247:100–114MathSciNetMATH Mall S, Chakraverty S (2014) Chebyshev neural network based model for solving Lane-Emden type equations. Appl Math Comput 247:100–114MathSciNetMATH
17.
go back to reference Jafarian A, Mokhtarpour M, Baleanu D (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765–773CrossRef Jafarian A, Mokhtarpour M, Baleanu D (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765–773CrossRef
18.
go back to reference Rostami F, Jafarian A (2018) A new artificial neural network structure for solving high-order linear fractional differential equations. Int J Comput Math 95(3):528–539MathSciNetCrossRefMATH Rostami F, Jafarian A (2018) A new artificial neural network structure for solving high-order linear fractional differential equations. Int J Comput Math 95(3):528–539MathSciNetCrossRefMATH
19.
go back to reference Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Contin 59(1):345–359 Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Contin 59(1):345–359
20.
go back to reference Liu B, Vu-Bac N, Rabczuk T (2021) A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms. Compos Struct 273:114269CrossRef Liu B, Vu-Bac N, Rabczuk T (2021) A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms. Compos Struct 273:114269CrossRef
21.
go back to reference Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRefMATH Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790MathSciNetCrossRefMATH
22.
go back to reference Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T (2021) Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur J Mech A Solids 87:104225MathSciNetCrossRefMATH Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T (2021) Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur J Mech A Solids 87:104225MathSciNetCrossRefMATH
25.
go back to reference Graupe D (2013) Principles of artificial neural networks, vol 7. World Scientific, SingaporeMATH Graupe D (2013) Principles of artificial neural networks, vol 7. World Scientific, SingaporeMATH
26.
27.
go back to reference El-Ajou A, Arqub OA, Zhour ZA, Momani S (2013) New results on fractional power series: theories and applications. Entropy 15(12):5305–5323MathSciNetCrossRefMATH El-Ajou A, Arqub OA, Zhour ZA, Momani S (2013) New results on fractional power series: theories and applications. Entropy 15(12):5305–5323MathSciNetCrossRefMATH
28.
go back to reference Jumarie G (2006) Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl 51(9–10):1367–1376MathSciNetCrossRefMATH Jumarie G (2006) Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl 51(9–10):1367–1376MathSciNetCrossRefMATH
29.
go back to reference Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRefMATH Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRefMATH
30.
go back to reference Funahashi K-I (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192CrossRef Funahashi K-I (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192CrossRef
32.
33.
go back to reference Lodhi S, Manzar MA, Raja MAZ (2019) Fractional neural network models for nonlinear Riccati systems. Neural Comput Appl 31(1):359–378CrossRef Lodhi S, Manzar MA, Raja MAZ (2019) Fractional neural network models for nonlinear Riccati systems. Neural Comput Appl 31(1):359–378CrossRef
34.
go back to reference Saratha SR, Bagyalakshmi M, Krishnan SS (2020) Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. Comput Appl Math 39(2):1–32MathSciNetCrossRefMATH Saratha SR, Bagyalakshmi M, Krishnan SS (2020) Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. Comput Appl Math 39(2):1–32MathSciNetCrossRefMATH
Metadata
Title
A new iterative technique for solving fractal-fractional differential equations based on artificial neural network in the new generalized Caputo sense
Authors
A. M. Shloof
N. Senu
A. Ahmadian
M. Pakdaman
S. Salahshour
Publication date
15-02-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 1/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01607-8

Other articles of this Issue 1/2023

Engineering with Computers 1/2023 Go to the issue