Skip to main content
Top
Published in: Quantum Information Processing 10/2019

01-10-2019

A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks

Authors: Heng-Ji Li, Jian Li, Nan Xiang, Yan Zheng, Yu-Guang Yang, Mosayeb Naseri

Published in: Quantum Information Processing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum walks have received much attention due to their many potential applications for quantum information processing in recent years. In this paper, we propose a novel class of universal and flexible quantum information splitting scheme of an arbitrary qubit and d-dimensional qudit via using the model of quantum walks with multiple coins for the first time. Firstly, for splitting an arbitrary qubit into N parts, quantum walks on the line with \(N+1\) coins, which are homogeneous and position dependent, are used, respectively. In addition, it can be generalized to the model of quantum walks on the cycle for fulfilling this scheme. Secondly, for distributing an unknown d-dimensional qudit into N parts, quantum walks with \(N+1\) coins are used on the complete graph and the d-regular graph, respectively. Our scheme has two significant merits: (i) It is universal and flexible, which implies that based on the different quantum walks structures, not only an unknown qubit but also d-dimensional qudit can be shared; (ii) the prior entangled state is not necessarily prepared and the entanglement measurement is not needed, which make this scheme more convenient for the agents in applications on a network. This work opens wider application purpose of quantum walks and provides inspiration to explore the potential applications of quantum walks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSCrossRef Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSCrossRef
2.
go back to reference Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)ADSCrossRef Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)ADSCrossRef
4.
go back to reference Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 052313 (2010)ADSCrossRef Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 052313 (2010)ADSCrossRef
6.
go back to reference Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)ADSMathSciNetCrossRef Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)ADSMathSciNetCrossRef
7.
go back to reference Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)ADSMathSciNetMATHCrossRef Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)ADSMathSciNetMATHCrossRef
8.
go back to reference Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96(6), 062326 (2017)ADSCrossRef Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96(6), 062326 (2017)ADSCrossRef
9.
go back to reference Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef
11.
go back to reference Li, H.-J., Chen, X.-B., Wang, Y.-L., Hou, Y.-Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum. Inf. Process. 18(9), 266 (2019)ADSCrossRef Li, H.-J., Chen, X.-B., Wang, Y.-L., Hou, Y.-Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum. Inf. Process. 18(9), 266 (2019)ADSCrossRef
12.
go back to reference Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)ADSMathSciNetMATHCrossRef Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)ADSMathSciNetMATHCrossRef
13.
go back to reference Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef
14.
go back to reference Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634 (2019)CrossRef Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634 (2019)CrossRef
17.
go back to reference Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)ADSCrossRef Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)ADSCrossRef
19.
go back to reference Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)ADSMathSciNetMATHCrossRef Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)ADSMathSciNetMATHCrossRef
20.
go back to reference Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)ADSCrossRef Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)ADSCrossRef
22.
go back to reference Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)ADSCrossRef Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)ADSCrossRef
24.
26.
go back to reference Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959 (2015)ADSMathSciNetMATHCrossRef Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959 (2015)ADSMathSciNetMATHCrossRef
27.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef
28.
go back to reference Xu, G., Chen, X.B., Dou, Z., Li, J., Liu, X., Li, Z.P.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18(7), 267 (2016)ADSMathSciNetCrossRef Xu, G., Chen, X.B., Dou, Z., Li, J., Liu, X., Li, Z.P.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18(7), 267 (2016)ADSMathSciNetCrossRef
29.
go back to reference Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATHCrossRef Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATHCrossRef
31.
go back to reference Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297 (2015)ADSMathSciNetMATHCrossRef Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297 (2015)ADSMathSciNetMATHCrossRef
32.
go back to reference Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19(2), 115 (2015)ADSCrossRef Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19(2), 115 (2015)ADSCrossRef
33.
go back to reference Li, Z.Z., Xu, G., Chen, X.B., Sun, X.M., Yang, Y.X.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20(12), 2470 (2016)CrossRef Li, Z.Z., Xu, G., Chen, X.B., Sun, X.M., Yang, Y.X.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20(12), 2470 (2016)CrossRef
34.
go back to reference Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China Inf. Sci. 59(4), 042301 (2016)CrossRef Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China Inf. Sci. 59(4), 042301 (2016)CrossRef
35.
go back to reference Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 12501 (2019)CrossRef Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 12501 (2019)CrossRef
36.
go back to reference Xu, G., Xiao, K., Li, Z., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Continua 58(3), 809 (2019)CrossRef Xu, G., Xiao, K., Li, Z., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Continua 58(3), 809 (2019)CrossRef
37.
go back to reference Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505 (2015)MathSciNetMATHCrossRef Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505 (2015)MathSciNetMATHCrossRef
38.
go back to reference Di Franco, C., Mc Gettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106(8), 080502 (2011)CrossRef Di Franco, C., Mc Gettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106(8), 080502 (2011)CrossRef
41.
go back to reference Li, J., Li, N., Zhang, Y., Wen, S., Du, W., Chen, W., Ma, W.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223 (2018)CrossRef Li, J., Li, N., Zhang, Y., Wen, S., Du, W., Chen, W., Ma, W.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223 (2018)CrossRef
42.
go back to reference Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)MathSciNetMATHCrossRef Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)MathSciNetMATHCrossRef
43.
go back to reference Wang, J.T., Xu, G., Chen, X.B., Sun, X.M., Jia, H.Y.: Local distinguishability of Dicke states in quantum secret sharing. Phys. Lett. A 381(11), 998 (2017)ADSMathSciNetMATHCrossRef Wang, J.T., Xu, G., Chen, X.B., Sun, X.M., Jia, H.Y.: Local distinguishability of Dicke states in quantum secret sharing. Phys. Lett. A 381(11), 998 (2017)ADSMathSciNetMATHCrossRef
44.
go back to reference Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)ADSMathSciNetMATHCrossRef Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)ADSMathSciNetMATHCrossRef
45.
go back to reference Chen, X.-B., Sun, Y.-R., Xu, G., Yang, Y.-X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inf. Sci. 501(10), 172–181 (2019)MathSciNetCrossRef Chen, X.-B., Sun, Y.-R., Xu, G., Yang, Y.-X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inf. Sci. 501(10), 172–181 (2019)MathSciNetCrossRef
46.
go back to reference Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)ADSCrossRef Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)ADSCrossRef
47.
go back to reference Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420 (2004)ADSMathSciNetMATHCrossRef Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420 (2004)ADSMathSciNetMATHCrossRef
48.
go back to reference Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103 (2015)ADSMathSciNetMATHCrossRef Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103 (2015)ADSMathSciNetMATHCrossRef
49.
go back to reference Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef
50.
go back to reference Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12(7), 2405 (2013)ADSMathSciNetMATHCrossRef Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12(7), 2405 (2013)ADSMathSciNetMATHCrossRef
51.
go back to reference Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)ADSCrossRef
52.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297 (2011)MathSciNetMATHCrossRef Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297 (2011)MathSciNetMATHCrossRef
53.
go back to reference Tao, Y., Tian, D., Hu, M., Qin, M.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17(2), 624 (2008)ADSCrossRef Tao, Y., Tian, D., Hu, M., Qin, M.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17(2), 624 (2008)ADSCrossRef
56.
57.
go back to reference Shi, R., Huang, L., Yang, W., Zhong, H.: Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 57(2), 287 (2010)ADSCrossRef Shi, R., Huang, L., Yang, W., Zhong, H.: Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 57(2), 287 (2010)ADSCrossRef
58.
go back to reference Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53 (2011)MathSciNetMATHCrossRef Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53 (2011)MathSciNetMATHCrossRef
59.
go back to reference Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)ADSCrossRef Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)ADSCrossRef
60.
go back to reference Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef
61.
go back to reference Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196 (2010)ADSCrossRef Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196 (2010)ADSCrossRef
62.
go back to reference Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum. Inf. Process. 13(1), 43–57 (2014)ADSMATHCrossRef Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum. Inf. Process. 13(1), 43–57 (2014)ADSMATHCrossRef
63.
go back to reference Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 37–49 (2001) Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 37–49 (2001)
64.
go back to reference Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 50–59 (2001) Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 50–59 (2001)
Metadata
Title
A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks
Authors
Heng-Ji Li
Jian Li
Nan Xiang
Yan Zheng
Yu-Guang Yang
Mosayeb Naseri
Publication date
01-10-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2422-3

Other articles of this Issue 10/2019

Quantum Information Processing 10/2019 Go to the issue