Skip to main content
Top
Published in: Cluster Computing 3/2019

09-03-2018

A new local and nonlocal total variation regularization model for image denoising

Authors: Mingju Chen, Hua Zhang, Guojun Lin, Qiang Han

Published in: Cluster Computing | Special Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The total variation (TV) method for image deblurring is effective for sharpening image details in noisy images although this method tends to over-smooth the image details and inevitably results in staircase effects in smooth areas of the image. The nonlocal total variation (NLTV) method overcomes these drawbacks and retains fine details. However, it is not suitable for detecting similar patches and usually blurs edges in the image. Considering that the TV and NLTV are complementary, we propose a new local and nonlocal total variation (LNLTV) model. In this model, we first decompose the original image into a cartoon component and a detail component, then respectively apply the TV and NLTV to both components. To optimize the hybrid model, the Bregman iteration-based multivariable minimization (BIMM) method and the fast iteration-based multivariable minimization (FIMM) method are respectively employed to minimize the LNLTV energy function. The experimental results clearly demonstrate that the LNLTV model has better performance than some other state-of-the-art models with regard to evaluation indices and visual quality, and the FIMM method has a faster convergence rate and requires less time than the BIMM method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1997)MathSciNetCrossRef Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1997)MathSciNetCrossRef
2.
go back to reference Aubin, J.P., Vinter, R.B.: Convex analysis and optimization. Tsinghua University Press, Beijing (2006) Aubin, J.P., Vinter, R.B.: Convex analysis and optimization. Tsinghua University Press, Beijing (2006)
3.
go back to reference Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491 (1977) Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491 (1977)
4.
go back to reference Marquina, A.: Nonlinear Inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009)MathSciNetCrossRef Marquina, A.: Nonlinear Inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009)MathSciNetCrossRef
5.
go back to reference Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)MathSciNetCrossRef Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)MathSciNetCrossRef
6.
go back to reference Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)MathSciNetCrossRef Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)MathSciNetCrossRef
7.
go back to reference Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)MathSciNetCrossRef Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)MathSciNetCrossRef
8.
go back to reference Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. In: Proceedings of Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, DBLP, Corfu, Greece, September 26–27, pp. 429–434 (1999) Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. In: Proceedings of Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, DBLP, Corfu, Greece, September 26–27, pp. 429–434 (1999)
9.
go back to reference Fu, S., Zhang, C.: Adaptive non-convex total variation regularization for image restoration. Electron. Lett. 46(13), 907–908 (2010)CrossRef Fu, S., Zhang, C.: Adaptive non-convex total variation regularization for image restoration. Electron. Lett. 46(13), 907–908 (2010)CrossRef
10.
go back to reference Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)MathSciNetCrossRef Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)MathSciNetCrossRef
11.
go back to reference Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRef Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRef
12.
go back to reference Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM J. Multiscale Model. Simul. 4(4), 1091–1115 (2005)MathSciNetCrossRef Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM J. Multiscale Model. Simul. 4(4), 1091–1115 (2005)MathSciNetCrossRef
13.
go back to reference Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM J. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRef Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM J. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRef
14.
go back to reference Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)MathSciNetCrossRef Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)MathSciNetCrossRef
15.
go back to reference Liu, X., Huang, L.: Original Article: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97(1), 224–233 (2014)CrossRef Liu, X., Huang, L.: Original Article: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97(1), 224–233 (2014)CrossRef
16.
go back to reference Wang, S., Liu, Z.W., Dong, W.S., et al.: Total variation based image deblurring with nonlocal self-similarity constraint. Electron. Lett. 47(16), 916–918 (2011)CrossRef Wang, S., Liu, Z.W., Dong, W.S., et al.: Total variation based image deblurring with nonlocal self-similarity constraint. Electron. Lett. 47(16), 916–918 (2011)CrossRef
17.
go back to reference Hao, W., Li, J.: Alternating total variation and non-local total variation for fast compressed sensing magnetic resonance imaging. Electron. Lett. 51(22), 1740–1742 (2015)CrossRef Hao, W., Li, J.: Alternating total variation and non-local total variation for fast compressed sensing magnetic resonance imaging. Electron. Lett. 51(22), 1740–1742 (2015)CrossRef
18.
go back to reference Tang, S., Gong, W., Li, W., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Signal Process. 94(1), 339–349 (2014)CrossRef Tang, S., Gong, W., Li, W., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Signal Process. 94(1), 339–349 (2014)CrossRef
19.
go back to reference Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)MathSciNetCrossRef Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)MathSciNetCrossRef
20.
go back to reference Zhang, H., Yan, B., Wang, L., et al.: Sparse-view image reconstruction with nonlocal total variation. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1–3 (2014) Zhang, H., Yan, B., Wang, L., et al.: Sparse-view image reconstruction with nonlocal total variation. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1–3 (2014)
21.
go back to reference Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. SIAM J. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetCrossRef Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. SIAM J. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetCrossRef
22.
go back to reference Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2006)MathSciNetCrossRef Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2006)MathSciNetCrossRef
23.
go back to reference Li, W., Li, Q., Gong, W., et al.: Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23(3), 409–417 (2012)CrossRef Li, W., Li, Q., Gong, W., et al.: Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23(3), 409–417 (2012)CrossRef
24.
go back to reference Jia, R.Q., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)MathSciNetCrossRef Jia, R.Q., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)MathSciNetCrossRef
25.
go back to reference Xie, Y., Zhang, W., Tao, D., et al.: Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 25(10), 4943–4958 (2016)MathSciNetCrossRef Xie, Y., Zhang, W., Tao, D., et al.: Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 25(10), 4943–4958 (2016)MathSciNetCrossRef
26.
go back to reference Jia, R.Q., Zhao, H., Zhao, W.: Convergence analysis of the Bregman method for the variational model of image denoising. Appl. Comput. Harmon. Anal. 27(3), 367–379 (2009)MathSciNetCrossRef Jia, R.Q., Zhao, H., Zhao, W.: Convergence analysis of the Bregman method for the variational model of image denoising. Appl. Comput. Harmon. Anal. 27(3), 367–379 (2009)MathSciNetCrossRef
27.
go back to reference Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for ℓ1-norm minimization. Math. Comput. 78(268), 2127–2136 (2009)MathSciNetCrossRef Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for ℓ1-norm minimization. Math. Comput. 78(268), 2127–2136 (2009)MathSciNetCrossRef
Metadata
Title
A new local and nonlocal total variation regularization model for image denoising
Authors
Mingju Chen
Hua Zhang
Guojun Lin
Qiang Han
Publication date
09-03-2018
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 3/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-2338-1

Other articles of this Special Issue 3/2019

Cluster Computing 3/2019 Go to the issue

Premium Partner