Skip to main content
Top

2022 | OriginalPaper | Chapter

6. A New Strategy for Form Finding and Optimal Design of Space Cable Network Structures

Authors : Sichen Yuan, Bingen Yang

Published in: Nonlinear Approaches in Engineering Application

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cable network structures, which are a class of nonlinear flexible structures, have been widely used in infrastructures and spacecrafts. In this work, a new form-finding method, namely, the fixed nodal position method (FNPM), is developed for optimal design of geometric configuration and internal force distribution for cable network structures, to meet the operation requirement of high shape/surface accuracy. Different from conventional methods, which usually adopts a stress-first-and-displacement-later procedure in form finding, the FNPM first assigns nodal coordinates for a cable network structure and then determines the internal force distribution of the structure by a nonlinear optimization process. The highlight of the FNPM is that the prescribed nodal coordinates are unchanged during the form-finding process. This unique feature of fixed nodal positions makes it possible to place the nodes of a cable network structure at desired locations, satisfying complicated structural constrains and yielding high shape/surface accuracy as required. As another advantage, the FNPM in form finding undertakes the assignment of geometric configuration (nodal coordinates) and the determination of internal force distribution separately. This translates into significant savings in computational effort, compared with conventional form-finding methods. The new form-finding method is applied to the optimal design of a large deployable mesh reflector of 865 nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J.H. Argyris, T. Angelopoulos, B. Bichat, A general method for the shape finding of lightweight tension structures, Computer Methods in Applied Mechanics and Engineering, 3 (1974) 135–149.CrossRef J.H. Argyris, T. Angelopoulos, B. Bichat, A general method for the shape finding of lightweight tension structures, Computer Methods in Applied Mechanics and Engineering, 3 (1974) 135–149.CrossRef
2.
go back to reference S. Yuan, B. Yang, H. Fang, Self-Standing Truss with Hard-Point-Enhanced Large Deployable Mesh Reflectors, AIAA Journal, 57 (2019) 5014–5026.CrossRef S. Yuan, B. Yang, H. Fang, Self-Standing Truss with Hard-Point-Enhanced Large Deployable Mesh Reflectors, AIAA Journal, 57 (2019) 5014–5026.CrossRef
3.
go back to reference S. Yuan, B. Yang, H. Fang, Enhancement of Large Deployable Mesh Reflectors by the Self-Standing Truss with Hard-Points, in: AIAA Scitech 2019 Forum, 2019, pp. 0752. S. Yuan, B. Yang, H. Fang, Enhancement of Large Deployable Mesh Reflectors by the Self-Standing Truss with Hard-Points, in: AIAA Scitech 2019 Forum, 2019, pp. 0752.
4.
go back to reference S. Yuan, B. Yang, The fixed nodal position method for form finding of high-precision lightweight truss structures, International Journal of Solids and Structures, 161 (2019) 82–95.CrossRef S. Yuan, B. Yang, The fixed nodal position method for form finding of high-precision lightweight truss structures, International Journal of Solids and Structures, 161 (2019) 82–95.CrossRef
5.
go back to reference S. Pellegrino, Structural computations with the singular value decomposition of the equilibrium matrix, International Journal of Solids and Structures, 30 (1993) 3025–3035.MATHCrossRef S. Pellegrino, Structural computations with the singular value decomposition of the equilibrium matrix, International Journal of Solids and Structures, 30 (1993) 3025–3035.MATHCrossRef
6.
go back to reference R. Haber, J. Abel, Initial equilibrium solution methods for cable reinforced membranes part I—formulations, Computer Methods in Applied Mechanics and Engineering, 30 (1982) 263–284.MATHCrossRef R. Haber, J. Abel, Initial equilibrium solution methods for cable reinforced membranes part I—formulations, Computer Methods in Applied Mechanics and Engineering, 30 (1982) 263–284.MATHCrossRef
7.
go back to reference S. Pellegrino, Mechanics of kinematically indeterminate structures, in, University of Cambridge, 1986. S. Pellegrino, Mechanics of kinematically indeterminate structures, in, University of Cambridge, 1986.
8.
go back to reference G. Tibert, Deployable tensegrity structures for space applications, Doctoral dissertation, KTH, 2002. G. Tibert, Deployable tensegrity structures for space applications, Doctoral dissertation, KTH, 2002.
9.
go back to reference S. Pellegrino, Analysis of prestressed mechanisms, International Journal of Solids and Structures, 26 (1990) 1329–1350.CrossRef S. Pellegrino, Analysis of prestressed mechanisms, International Journal of Solids and Structures, 26 (1990) 1329–1350.CrossRef
10.
go back to reference C. Calladine, Buckminster Fuller's “tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames, International Journal of Solids and Structures, 14 (1978) 161–172.MATHCrossRef C. Calladine, Buckminster Fuller's “tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames, International Journal of Solids and Structures, 14 (1978) 161–172.MATHCrossRef
11.
go back to reference J. Zhang, M. Ohsaki, Adaptive force density method for form-finding problem of tensegrity structures, International Journal of Solids and Structures, 43 (2006) 5658–5673.MATHCrossRef J. Zhang, M. Ohsaki, Adaptive force density method for form-finding problem of tensegrity structures, International Journal of Solids and Structures, 43 (2006) 5658–5673.MATHCrossRef
12.
go back to reference R.B. Fuller, Synergetics: explorations in the geometry of thinking, Estate of R. Buckminster Fuller, 1982. R.B. Fuller, Synergetics: explorations in the geometry of thinking, Estate of R. Buckminster Fuller, 1982.
13.
go back to reference R. Motro, Structural morphology of tensegrity systems, International Journal of Space Structures, 11 (1996) 233–240.MATHCrossRef R. Motro, Structural morphology of tensegrity systems, International Journal of Space Structures, 11 (1996) 233–240.MATHCrossRef
14.
go back to reference R. Motro, H. Nooshin, Forms and forces in tensegrity systems, in: Proceedings of third international conference on space structures, Elsevier, Amsterdam, 1984, pp. 180–185. R. Motro, H. Nooshin, Forms and forces in tensegrity systems, in: Proceedings of third international conference on space structures, Elsevier, Amsterdam, 1984, pp. 180–185.
15.
go back to reference A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–256.CrossRef A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–256.CrossRef
16.
go back to reference K. Koohestani, Form-finding of tensegrity structures via genetic algorithm, International Journal of Solids and Structures, 49 (2012) 739–747.CrossRef K. Koohestani, Form-finding of tensegrity structures via genetic algorithm, International Journal of Solids and Structures, 49 (2012) 739–747.CrossRef
17.
go back to reference D. Veenendaal, P. Block, An overview and comparison of structural form finding methods for general networks, International Journal of Solids and Structures, 49 (2012) 3741–3753.CrossRef D. Veenendaal, P. Block, An overview and comparison of structural form finding methods for general networks, International Journal of Solids and Structures, 49 (2012) 3741–3753.CrossRef
18.
go back to reference S. Pellegrino, C.R. Calladine, Matrix analysis of statically and kinematically indeterminate frameworks, International Journal of Solids and Structures, 22 (1986) 409–428.CrossRef S. Pellegrino, C.R. Calladine, Matrix analysis of statically and kinematically indeterminate frameworks, International Journal of Solids and Structures, 22 (1986) 409–428.CrossRef
19.
go back to reference M. Masic, R.E. Skelton, P.E. Gill, Algebraic tensegrity form-finding, International Journal of Solids and Structures, 42 (2005) 4833–4858.MathSciNetMATHCrossRef M. Masic, R.E. Skelton, P.E. Gill, Algebraic tensegrity form-finding, International Journal of Solids and Structures, 42 (2005) 4833–4858.MathSciNetMATHCrossRef
20.
go back to reference H. Shi, S. Yuan, B. Yang, New Methodology of Surface Mesh Geometry Design for Deployable Mesh Reflectors, Journal of Spacecraft and Rockets, 55 (2018) 266–281.CrossRef H. Shi, S. Yuan, B. Yang, New Methodology of Surface Mesh Geometry Design for Deployable Mesh Reflectors, Journal of Spacecraft and Rockets, 55 (2018) 266–281.CrossRef
21.
go back to reference F.E. Udwadia, R.E. Kalaba, Analytical dynamics: a new approach, Cambridge University Press, 2007.MATH F.E. Udwadia, R.E. Kalaba, Analytical dynamics: a new approach, Cambridge University Press, 2007.MATH
22.
go back to reference S. Yuan, B. Yang, Design and Optimization of Tension Distribution for Space Deployable Mesh Reflectors, in: 26th AAS/AIAA Space Flight Mechanics Meeting, Univelt, Napa, CA, 2016, pp. 765–776. S. Yuan, B. Yang, Design and Optimization of Tension Distribution for Space Deployable Mesh Reflectors, in: 26th AAS/AIAA Space Flight Mechanics Meeting, Univelt, Napa, CA, 2016, pp. 765–776.
23.
go back to reference K.E. Jensen, Numerical Optimization in Microfluidics, in: Complex Fluid-Flows in Microfluidics, Springer, 2018, pp. 95–108. K.E. Jensen, Numerical Optimization in Microfluidics, in: Complex Fluid-Flows in Microfluidics, Springer, 2018, pp. 95–108.
24.
go back to reference H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening, International Journal of Photoenergy, 2017 (2017). H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening, International Journal of Photoenergy, 2017 (2017).
25.
go back to reference M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM Journal on Optimization, 13 (2002) 865–888.MathSciNetMATHCrossRef M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM Journal on Optimization, 13 (2002) 865–888.MathSciNetMATHCrossRef
26.
go back to reference A. Tibert, S. Pellegrino, Deployable tensegrity reflectors for small satellites, Journal of Spacecraft and Rockets, 39 (2002) 701–709.CrossRef A. Tibert, S. Pellegrino, Deployable tensegrity reflectors for small satellites, Journal of Spacecraft and Rockets, 39 (2002) 701–709.CrossRef
27.
go back to reference S. Yuan, B. Yang, H. Fang, Form-Finding of Large Deployable Mesh Reflectors with Elastic Deformations of Supporting Structures, in: 2018 AIAA Spacecraft Structures Conference, 2018, pp. 1198. S. Yuan, B. Yang, H. Fang, Form-Finding of Large Deployable Mesh Reflectors with Elastic Deformations of Supporting Structures, in: 2018 AIAA Spacecraft Structures Conference, 2018, pp. 1198.
28.
go back to reference I.K. Linkwitz, H.-J. Schek, Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen, Ingenieur-Archiv, 40 (1971) 145–158.CrossRef I.K. Linkwitz, H.-J. Schek, Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen, Ingenieur-Archiv, 40 (1971) 145–158.CrossRef
29.
go back to reference H.-J. Schek, The force density method for form finding and computation of general networks, Computer methods in applied mechanics and engineering, 3 (1974) 115–134.MathSciNetCrossRef H.-J. Schek, The force density method for form finding and computation of general networks, Computer methods in applied mechanics and engineering, 3 (1974) 115–134.MathSciNetCrossRef
30.
go back to reference L. Gründig, E. Moncrieff, P. Singer, D. Ströbel, A history of the principal developments and applications of the force density method in Germany 1970–1999, 4th Int. Coll. Computation of Shell & Spatial Structures, (2000). L. Gründig, E. Moncrieff, P. Singer, D. Ströbel, A history of the principal developments and applications of the force density method in Germany 1970–1999, 4th Int. Coll. Computation of Shell & Spatial Structures, (2000).
31.
go back to reference J. Sánchez, M.Á. Serna, P. Morer, A multi-step force–density method and surface-fitting approach for the preliminary shape design of tensile structures, Engineering structures, 29 (2007) 1966–1976.CrossRef J. Sánchez, M.Á. Serna, P. Morer, A multi-step force–density method and surface-fitting approach for the preliminary shape design of tensile structures, Engineering structures, 29 (2007) 1966–1976.CrossRef
32.
go back to reference G. Aboul-Nasr, S.A. Mourad, An extended force density method for form finding of constrained cable nets, Case Studies in Structural Engineering, 3 (2015) 19–32.CrossRef G. Aboul-Nasr, S.A. Mourad, An extended force density method for form finding of constrained cable nets, Case Studies in Structural Engineering, 3 (2015) 19–32.CrossRef
33.
go back to reference M. Barnes, Form-finding and analysis of tension space structures by dynamic relaxation, in, City University, 1977. M. Barnes, Form-finding and analysis of tension space structures by dynamic relaxation, in, City University, 1977.
34.
go back to reference A. Day, J. Bunce, The analysis of hanging roofs, Arup Journal, (1969) 30–31. A. Day, J. Bunce, The analysis of hanging roofs, Arup Journal, (1969) 30–31.
35.
go back to reference N.B.H. Ali, L. Rhode-Barbarigos, I.F. Smith, Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, International Journal of Solids and Structures, 48 (2011) 637–647.MATHCrossRef N.B.H. Ali, L. Rhode-Barbarigos, I.F. Smith, Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, International Journal of Solids and Structures, 48 (2011) 637–647.MATHCrossRef
36.
go back to reference M. Barnes, Form finding and analysis of tension structures by dynamic relaxation, International journal of space structures, 14 (1999) 89–104.CrossRef M. Barnes, Form finding and analysis of tension structures by dynamic relaxation, International journal of space structures, 14 (1999) 89–104.CrossRef
37.
go back to reference R. Motro, S. Belkacem, N. Vassart, Form finding numerical methods for tensegrity systems, in: Spatial, Lattice and Tension Structures, ASCE, 1994, pp. 704–713. R. Motro, S. Belkacem, N. Vassart, Form finding numerical methods for tensegrity systems, in: Spatial, Lattice and Tension Structures, ASCE, 1994, pp. 704–713.
38.
go back to reference A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–255.CrossRef A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–255.CrossRef
39.
go back to reference R. Connelly, M. Terrell, Globally rigid symmetric tensegrities, Structural Topology 1995 núm 21, (1995).MATH R. Connelly, M. Terrell, Globally rigid symmetric tensegrities, Structural Topology 1995 núm 21, (1995).MATH
40.
go back to reference J. Argyris, D.W. Scharpf, Large deflection analysis of prestressed networks, Journal of the Structural Division, 98 (1972) 633–654.CrossRef J. Argyris, D.W. Scharpf, Large deflection analysis of prestressed networks, Journal of the Structural Division, 98 (1972) 633–654.CrossRef
41.
go back to reference P. Krishna, Cable-suspended roofs, McGraw-Hill Companies, 1978. P. Krishna, Cable-suspended roofs, McGraw-Hill Companies, 1978.
42.
go back to reference H. Murakami, Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion, International Journal of Solids and Structures, 38 (2001) 3599–3613.MATHCrossRef H. Murakami, Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion, International Journal of Solids and Structures, 38 (2001) 3599–3613.MATHCrossRef
43.
go back to reference H. Murakami, Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis, International Journal of Solids and Structures, 38 (2001) 3615–3629.CrossRef H. Murakami, Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis, International Journal of Solids and Structures, 38 (2001) 3615–3629.CrossRef
44.
go back to reference S. Guest, The stiffness of prestressed frameworks: a unifying approach, International Journal of Solids and Structures, 43 (2006) 842–854.MATHCrossRef S. Guest, The stiffness of prestressed frameworks: a unifying approach, International Journal of Solids and Structures, 43 (2006) 842–854.MATHCrossRef
45.
go back to reference C. Fletcher, Computational techniques for fluid dynamics 2: Specific techniques for different flow categories, Springer Science & Business Media, 2012. C. Fletcher, Computational techniques for fluid dynamics 2: Specific techniques for different flow categories, Springer Science & Business Media, 2012.
46.
go back to reference R. Nie, B. He, L. Zhang, Y. Fang, Deployment analysis for space cable net structures with varying topologies and parameters, Aerospace Science and Technology, 68 (2017) 1–10.CrossRef R. Nie, B. He, L. Zhang, Y. Fang, Deployment analysis for space cable net structures with varying topologies and parameters, Aerospace Science and Technology, 68 (2017) 1–10.CrossRef
47.
go back to reference R. Nie, B. He, L. Zhang, Deployment dynamics modeling and analysis for mesh reflector antennas considering the motion feasibility, Nonlinear Dynamics, 91 (2018) 549–564.CrossRef R. Nie, B. He, L. Zhang, Deployment dynamics modeling and analysis for mesh reflector antennas considering the motion feasibility, Nonlinear Dynamics, 91 (2018) 549–564.CrossRef
48.
go back to reference K. Nakamura, N. Nakamura, S. Ozawa, A. Uematsu, H. Hoshino, T. Kimura, Concept Design of 15m class Light Weight Deployable Antenna Reflector for L-band SAR Application, in: 3rd AIAA Spacecraft Structures Conference, 2016, pp. 0701. K. Nakamura, N. Nakamura, S. Ozawa, A. Uematsu, H. Hoshino, T. Kimura, Concept Design of 15m class Light Weight Deployable Antenna Reflector for L-band SAR Application, in: 3rd AIAA Spacecraft Structures Conference, 2016, pp. 0701.
49.
go back to reference Y. Tang, T. Li, X. Ma, Pillow Distortion Analysis for a Space Mesh Reflector Antenna, AIAA Journal, (2017) 3206–3213. Y. Tang, T. Li, X. Ma, Pillow Distortion Analysis for a Space Mesh Reflector Antenna, AIAA Journal, (2017) 3206–3213.
50.
go back to reference M.W. Thomson, Astromesh deployable reflectors for Ku-and Ka-band commercial satellites, in: 20th AIAA International Communication Satellite Systems Conference and Exhibit, 2002, pp. 15. M.W. Thomson, Astromesh deployable reflectors for Ku-and Ka-band commercial satellites, in: 20th AIAA International Communication Satellite Systems Conference and Exhibit, 2002, pp. 15.
51.
go back to reference P. Agrawal, M. Anderson, M. Card, Preliminary design of large reflectors with flat facets, IEEE transactions on antennas and propagation, 29 (1981) 688–694.CrossRef P. Agrawal, M. Anderson, M. Card, Preliminary design of large reflectors with flat facets, IEEE transactions on antennas and propagation, 29 (1981) 688–694.CrossRef
52.
go back to reference S. Yuan, B. Yang, H. Fang, The Projecting Surface Method for improvement of surface accuracy of large deployable mesh reflectors, Acta Astronautica, 151 (2018) 678–690.CrossRef S. Yuan, B. Yang, H. Fang, The Projecting Surface Method for improvement of surface accuracy of large deployable mesh reflectors, Acta Astronautica, 151 (2018) 678–690.CrossRef
53.
go back to reference S. Yuan, B. Yang, H. Fang, Direct Root-Mean-Square Error for Surface Accuracy Evaluation of Large Deployable Mesh Reflectors, in: AIAA Scitech 2020 Forum, 2020, pp. 0935. S. Yuan, B. Yang, H. Fang, Direct Root-Mean-Square Error for Surface Accuracy Evaluation of Large Deployable Mesh Reflectors, in: AIAA Scitech 2020 Forum, 2020, pp. 0935.
54.
go back to reference S. Morterolle, B. Maurin, J. Quirant, C. Dupuy, Numerical form-finding of geotensoid tension truss for mesh reflector, Acta Astronautica, 76 (2012) 154–163.CrossRef S. Morterolle, B. Maurin, J. Quirant, C. Dupuy, Numerical form-finding of geotensoid tension truss for mesh reflector, Acta Astronautica, 76 (2012) 154–163.CrossRef
55.
go back to reference J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.MATH J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.MATH
Metadata
Title
A New Strategy for Form Finding and Optimal Design of Space Cable Network Structures
Authors
Sichen Yuan
Bingen Yang
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-82719-9_6