Skip to main content
Top
Published in: Cognitive Computation 3/2020

03-12-2019

A Novel Approach for EEG Electrode Selection in Automated Emotion Recognition Based on Lagged Poincare’s Indices and sLORETA

Authors: Ateke Goshvarpour, Atefeh Goshvarpour

Published in: Cognitive Computation | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of this paper was to develop a novel method to track emotional processing in different brain regions using electroencephalogram (EEG) analysis. In addition, the role of EEG electrode selection and feature reduction in emotion recognition was investigated. To this end, the multi-channel EEG signals of 32 subjects available in DEAP dataset were studied. The best EEG electrode positions were selected based on lagged Poincare’s measures of EEG recordings and a source localization method (sLORETA). Three feature reduction algorithms, including random subset feature selection (RSFS), sequential floating forward selection (SFFS), and sequential forward selection (SFS) in combination with support vector machine (SVM), were evaluated to classify high/low valence and high/low arousal. The results showed that RSFS outperformed the other feature selection approaches. In addition, the positive impact of the EEG electrode selection on the classification performances has been confirmed. The most active EEG electrodes were FP1, C3, Cp1, P3, and Pz. Adopting RSFS and selected EEG electrodes, the mean subject-independent accuracies of 73.89 and 74.62% and subject-dependent accuracies of 98.97 and 98.94% were obtained for valence and arousal dimensions, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buchanan TW, Tranel D. Central and peripheral nervous system interactions: from mind to brain to body. Int J Psychophysiol. 2009;72:1–4.PubMedCrossRef Buchanan TW, Tranel D. Central and peripheral nervous system interactions: from mind to brain to body. Int J Psychophysiol. 2009;72:1–4.PubMedCrossRef
2.
go back to reference Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008;5:25.PubMedPubMedCentralCrossRef Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008;5:25.PubMedPubMedCentralCrossRef
3.
go back to reference Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol. 2010;84:394–421.PubMedCrossRef Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol. 2010;84:394–421.PubMedCrossRef
4.
go back to reference Zhalehpour S, Akhtar Z, Erdem CE. Multimodal emotion recognition based on peak frame selection from video. Signal Image Video P. 2016;10:827–34.CrossRef Zhalehpour S, Akhtar Z, Erdem CE. Multimodal emotion recognition based on peak frame selection from video. Signal Image Video P. 2016;10:827–34.CrossRef
5.
go back to reference Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput. 2018;10:368–80.CrossRef Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput. 2018;10:368–80.CrossRef
6.
go back to reference Jing S, Mao X, Chen L. Prominence features: effective emotional features for speech emotion recognition. Digit Signal Process. 2018;72:216–31.CrossRef Jing S, Mao X, Chen L. Prominence features: effective emotional features for speech emotion recognition. Digit Signal Process. 2018;72:216–31.CrossRef
8.
go back to reference Griol D, Molina JM, Callejas Z. Combining speech-based and linguistic classifiers to recognize emotion in user spoken utterances. Neurocomputing. 2019;326–327:132–40.CrossRef Griol D, Molina JM, Callejas Z. Combining speech-based and linguistic classifiers to recognize emotion in user spoken utterances. Neurocomputing. 2019;326–327:132–40.CrossRef
9.
go back to reference Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput. 2019;11:227–40.CrossRef Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput. 2019;11:227–40.CrossRef
10.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. Do men and women have different ECG responses to sad pictures? Biomed Signal Process Control. 2017;38:67–73.CrossRef Goshvarpour A, Abbasi A, Goshvarpour A. Do men and women have different ECG responses to sad pictures? Biomed Signal Process Control. 2017;38:67–73.CrossRef
11.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged Poincare plots. Australas Phys Eng Sci Med. 2017;40:617–29.PubMedCrossRef Goshvarpour A, Abbasi A, Goshvarpour A. Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged Poincare plots. Australas Phys Eng Sci Med. 2017;40:617–29.PubMedCrossRef
12.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed J. 2017;40:355–68.PubMedCrossRef Goshvarpour A, Abbasi A, Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed J. 2017;40:355–68.PubMedCrossRef
13.
go back to reference Zheng W. Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans Cogn Dev Syst. 2017;9:281–90.CrossRef Zheng W. Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans Cogn Dev Syst. 2017;9:281–90.CrossRef
14.
go back to reference Zubair M, Yoon C. EEG based classification of human emotions using discrete wavelet transform. In: Kim K, Kim H, Baek N, editors. IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, vol. 450. Singapore: Springer; 2018. p. 21–8.CrossRef Zubair M, Yoon C. EEG based classification of human emotions using discrete wavelet transform. In: Kim K, Kim H, Baek N, editors. IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, vol. 450. Singapore: Springer; 2018. p. 21–8.CrossRef
15.
go back to reference Aftanas LI, Lotova NV, Koshkarov VI, Makhnev VP, Mordvintsev YN, Popov SA. Non-linear dynamic complexity of the human EEG during evoked emotions. Int J Psychophysiol. 1998;28:63–76.PubMedCrossRef Aftanas LI, Lotova NV, Koshkarov VI, Makhnev VP, Mordvintsev YN, Popov SA. Non-linear dynamic complexity of the human EEG during evoked emotions. Int J Psychophysiol. 1998;28:63–76.PubMedCrossRef
16.
go back to reference Bos DO. EEG-based emotion recognition, the influence of visual and auditory stimuli: Capita Selecta, University of Twente; 2006. p. 1–17. Bos DO. EEG-based emotion recognition, the influence of visual and auditory stimuli: Capita Selecta, University of Twente; 2006. p. 1–17.
17.
go back to reference Hoseingholizade S, Hashemi Golpaygani MR, Saburruh Monfared A. Studying emotion through nonlinear processing of EEG. Procedia Soc Behav Sci. 2012;32:163–9.CrossRef Hoseingholizade S, Hashemi Golpaygani MR, Saburruh Monfared A. Studying emotion through nonlinear processing of EEG. Procedia Soc Behav Sci. 2012;32:163–9.CrossRef
18.
go back to reference Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput. 2014;5:327–39.CrossRef Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput. 2014;5:327–39.CrossRef
19.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. Dynamical analysis of emotional states from electroencephalogram signals. Biomed Eng Appl Basis Commun. 2016;28:1650015.CrossRef Goshvarpour A, Abbasi A, Goshvarpour A. Dynamical analysis of emotional states from electroencephalogram signals. Biomed Eng Appl Basis Commun. 2016;28:1650015.CrossRef
20.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. Combination of sLORETA and nonlinear coupling for emotional EEG source localization. Nonlinear Dyn Psychol Life Sci. 2016;20:353–68. Goshvarpour A, Abbasi A, Goshvarpour A. Combination of sLORETA and nonlinear coupling for emotional EEG source localization. Nonlinear Dyn Psychol Life Sci. 2016;20:353–68.
21.
go back to reference Heraz A, Frasson C. Predicting the three major dimensions of the learner’s emotions from brainwaves. World Acad Sci Eng Technol. 2007;25:323–9. Heraz A, Frasson C. Predicting the three major dimensions of the learner’s emotions from brainwaves. World Acad Sci Eng Technol. 2007;25:323–9.
22.
go back to reference Wang X-W, Nie D, Lu B-L. Emotional state classification from EEG data using machine learning approach. Neurocomputing. 2014;129:94–106.CrossRef Wang X-W, Nie D, Lu B-L. Emotional state classification from EEG data using machine learning approach. Neurocomputing. 2014;129:94–106.CrossRef
23.
go back to reference Liu Y, Sourina O. Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova ML, Tan CJK, Mao X, Hong L, editors. Trans. on Comput. Sci. XXIII: LNCS; 2014. p. 199–223. Liu Y, Sourina O. Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova ML, Tan CJK, Mao X, Hong L, editors. Trans. on Comput. Sci. XXIII: LNCS; 2014. p. 199–223.
24.
go back to reference Bhatti AM, Majid M, Anwar SM, Khan B. Human emotion recognition and analysis is response to audio music using brain signals. Comput Hum Behav. 2016;65:267–75.CrossRef Bhatti AM, Majid M, Anwar SM, Khan B. Human emotion recognition and analysis is response to audio music using brain signals. Comput Hum Behav. 2016;65:267–75.CrossRef
25.
go back to reference Zheng W-L, Lu B-L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Mental Dev. 2015;7:162–75.CrossRef Zheng W-L, Lu B-L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Mental Dev. 2015;7:162–75.CrossRef
26.
go back to reference Zhang Y, Ji X, Zhang S. An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett. 2016;633:152–7.PubMedCrossRef Zhang Y, Ji X, Zhang S. An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett. 2016;633:152–7.PubMedCrossRef
27.
go back to reference Mert A, Akan A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal Appl. 2016:1–9. Mert A, Akan A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal Appl. 2016:1–9.
28.
go back to reference Kumar N, Khaund K, Hazarika SM. Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci. 2016;84:31–5.CrossRef Kumar N, Khaund K, Hazarika SM. Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci. 2016;84:31–5.CrossRef
29.
go back to reference Bozhkov L, Koprinkova-Hristova P, Georgieva P. Reservoir computing for emotion valence discrimination from EEG signals. Neurocomputing. 2017;231:28–40.CrossRef Bozhkov L, Koprinkova-Hristova P, Georgieva P. Reservoir computing for emotion valence discrimination from EEG signals. Neurocomputing. 2017;231:28–40.CrossRef
30.
go back to reference Mehmood RM, Du R, Lee HJ, Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors, IEEE Access 5 (Special Section: Advances of Multisensory Services and Technologies for Healthcare in Smart Cities), 2017, pp. 14797–14806. Mehmood RM, Du R, Lee HJ, Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors, IEEE Access 5 (Special Section: Advances of Multisensory Services and Technologies for Healthcare in Smart Cities), 2017, pp. 14797–14806.
31.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A. Indices from lagged Poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas Phys Eng Sci Med. 2017;40:277–87.PubMedCrossRef Goshvarpour A, Abbasi A, Goshvarpour A. Indices from lagged Poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas Phys Eng Sci Med. 2017;40:277–87.PubMedCrossRef
32.
go back to reference Goshvarpour A, Goshvarpour A. Poincaré’s section analysis for PPG-based automatic emotion recognition. Chaos, Solitons Fractals. 2018;114:400–7.CrossRef Goshvarpour A, Goshvarpour A. Poincaré’s section analysis for PPG-based automatic emotion recognition. Chaos, Solitons Fractals. 2018;114:400–7.CrossRef
33.
go back to reference Goshvarpour A, Abbasi A, Goshvarpour A, Daneshvar S. Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses. Signal Image Video P. 2017;11:1347–55.CrossRef Goshvarpour A, Abbasi A, Goshvarpour A, Daneshvar S. Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses. Signal Image Video P. 2017;11:1347–55.CrossRef
34.
go back to reference Goshvarpour A, Goshvarpour A, Abbasi A. Evaluation of signal processing techniques in discriminating ECG signals of men and women during rest condition and emotional states. Biomed Eng Appl Basis Commun. 2018;30:1850028.CrossRef Goshvarpour A, Goshvarpour A, Abbasi A. Evaluation of signal processing techniques in discriminating ECG signals of men and women during rest condition and emotional states. Biomed Eng Appl Basis Commun. 2018;30:1850028.CrossRef
35.
go back to reference Nardelli M, Valenza G, Greco A, Lanata A, Scilingo E. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans Affect Comput. 2015;6:385–94.CrossRef Nardelli M, Valenza G, Greco A, Lanata A, Scilingo E. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans Affect Comput. 2015;6:385–94.CrossRef
36.
go back to reference Goshvarpour A, Goshvarpour A. EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences. Cogn Neurodyn. 2019;13:161–73.PubMedCrossRef Goshvarpour A, Goshvarpour A. EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences. Cogn Neurodyn. 2019;13:161–73.PubMedCrossRef
37.
go back to reference Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Trans Affect Comput. 2012;3:18–31.CrossRef Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Trans Affect Comput. 2012;3:18–31.CrossRef
38.
go back to reference Morris JD. SAM: the self-assessment manikin. An efficient cross-cultural measurement of emotional response. J Advert Res. 1995;35:63–8. Morris JD. SAM: the self-assessment manikin. An efficient cross-cultural measurement of emotional response. J Advert Res. 1995;35:63–8.
39.
go back to reference Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44:143–63.PubMedCrossRef Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44:143–63.PubMedCrossRef
40.
go back to reference Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.PubMedCrossRef Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.PubMedCrossRef
41.
go back to reference Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol. 2002;24:91–5.PubMed Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol. 2002;24:91–5.PubMed
42.
go back to reference Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.PubMed Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.PubMed
43.
go back to reference Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system - an approach to cerebral imaging. New York: Thieme Medical Publishers; 1988. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system - an approach to cerebral imaging. New York: Thieme Medical Publishers; 1988.
44.
go back to reference RD. Pascual-Marqui, Discrete, 3D distributed, linear imaging methods of electric neuronal activity Part 1: exact, zero error localization, (2007), http://arxivorg/pdf/07103341 RD. Pascual-Marqui, Discrete, 3D distributed, linear imaging methods of electric neuronal activity Part 1: exact, zero error localization, (2007), http://​arxivorg/​pdf/​07103341
45.
go back to reference Jatoi MA, Kamel N, Malik AS, Faye I, Begum T. A survey of methods used for source localization using EEG signal. Biomed Signal Process. Control. 2014;11:42–52.CrossRef Jatoi MA, Kamel N, Malik AS, Faye I, Begum T. A survey of methods used for source localization using EEG signal. Biomed Signal Process. Control. 2014;11:42–52.CrossRef
46.
go back to reference Whitney AW. A direct method of nonparametric measurement selection. IEEE Trans Comput. 1971;20:1100–3.CrossRef Whitney AW. A direct method of nonparametric measurement selection. IEEE Trans Comput. 1971;20:1100–3.CrossRef
47.
go back to reference Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15:1119–25.CrossRef Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15:1119–25.CrossRef
48.
go back to reference Räsänen O, Pohjalainen J. Random subset feature selection in automatic recognition of developmental disorders, affective states, and level of conflict from speech. Interspeech. 2013:210–4. Räsänen O, Pohjalainen J. Random subset feature selection in automatic recognition of developmental disorders, affective states, and level of conflict from speech. Interspeech. 2013:210–4.
49.
go back to reference Breed MD. Conceptual breakthroughs in ethology and animal behavior, Chapter 74: 2000 Emotion and the Brain: Academic Press, Elsevier; 2017. p. 225–6. Breed MD. Conceptual breakthroughs in ethology and animal behavior, Chapter 74: 2000 Emotion and the Brain: Academic Press, Elsevier; 2017. p. 225–6.
50.
go back to reference Ueda K, Fujimoto G, Ubukata S, Murai T. Brodmann Areas 11, 46, and 47: emotion, memory, and empathy. Brain Nerve. 2017;69:367–74.PubMed Ueda K, Fujimoto G, Ubukata S, Murai T. Brodmann Areas 11, 46, and 47: emotion, memory, and empathy. Brain Nerve. 2017;69:367–74.PubMed
51.
go back to reference Pouladi F, Moradi A, Rostami R, Nosratabadi M. Source localization of the effects of Persian classical music forms on the brain waves by QEEG. Procedia Soc Behav Sci. 2010;5:770–3.CrossRef Pouladi F, Moradi A, Rostami R, Nosratabadi M. Source localization of the effects of Persian classical music forms on the brain waves by QEEG. Procedia Soc Behav Sci. 2010;5:770–3.CrossRef
52.
go back to reference Flores-Gutiérrez EO, Díaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Río-Portilla Y, et al. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol. 2007;65:69–84.PubMedCrossRef Flores-Gutiérrez EO, Díaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Río-Portilla Y, et al. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol. 2007;65:69–84.PubMedCrossRef
53.
go back to reference Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A, et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage. 2006;29:721–33.PubMedCrossRef Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A, et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage. 2006;29:721–33.PubMedCrossRef
55.
go back to reference Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci. 2000;20:7752–9.PubMedPubMedCentralCrossRef Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci. 2000;20:7752–9.PubMedPubMedCentralCrossRef
56.
go back to reference Khalfa S, Schon D, Anton JL, Liegeois-Chauvel C. Brain regions involved in the recognition of happiness and sadness in music. NeuroReport. 2005;16:1981–4.PubMedCrossRef Khalfa S, Schon D, Anton JL, Liegeois-Chauvel C. Brain regions involved in the recognition of happiness and sadness in music. NeuroReport. 2005;16:1981–4.PubMedCrossRef
58.
go back to reference Bahrdwaj A, Gupta A, Jain P, Rani A, Yadav J. Classification of human emotions from EEG signals using SVM and LDA classifiers. In: 2nd international conference on signal processing and integrated networks (SPIN); 2015. p. 180–5. Bahrdwaj A, Gupta A, Jain P, Rani A, Yadav J. Classification of human emotions from EEG signals using SVM and LDA classifiers. In: 2nd international conference on signal processing and integrated networks (SPIN); 2015. p. 180–5.
59.
go back to reference Hadjidimitriou SK, Zacharakis AI, Doulgeris PC, Panoulas KJ, Hadjileontiadis LJ, Panas SM. Revealing action representation processes in audio perception using fractal EEG analysis. IEEE Trans Biomed Eng. 2011;58:1120–9.PubMedCrossRef Hadjidimitriou SK, Zacharakis AI, Doulgeris PC, Panoulas KJ, Hadjileontiadis LJ, Panas SM. Revealing action representation processes in audio perception using fractal EEG analysis. IEEE Trans Biomed Eng. 2011;58:1120–9.PubMedCrossRef
60.
go back to reference Stalans L, Wedding D. Superiority of the left hemisphere in the recognition of emotional faces. Int J Neurosci. 1985;25:219–23.PubMedCrossRef Stalans L, Wedding D. Superiority of the left hemisphere in the recognition of emotional faces. Int J Neurosci. 1985;25:219–23.PubMedCrossRef
62.
go back to reference Lindell A. Lateralization of the expression of facial emotion in humans. In: Forrester GS, Hopkins WD, Hudry K, Lindell A, editors. Progress in Brain Research: Elsevier; 2018. p. 249–70. Lindell A. Lateralization of the expression of facial emotion in humans. In: Forrester GS, Hopkins WD, Hudry K, Lindell A, editors. Progress in Brain Research: Elsevier; 2018. p. 249–70.
63.
go back to reference Ross P, de Gelder B, Crabbe F, Grosbras M-H. Emotion modulation of the body-selective areas in the developing brain. Dev Cogn Neuros-Neth. 2019;38:100660.CrossRef Ross P, de Gelder B, Crabbe F, Grosbras M-H. Emotion modulation of the body-selective areas in the developing brain. Dev Cogn Neuros-Neth. 2019;38:100660.CrossRef
64.
go back to reference Wyczesany M, Capotosto P, Zappasodi F, Prete G. Hemispheric asymmetries and emotions: evidence from effective connectivity. Neuropsychologia. 2018;121:98–105.PubMedCrossRef Wyczesany M, Capotosto P, Zappasodi F, Prete G. Hemispheric asymmetries and emotions: evidence from effective connectivity. Neuropsychologia. 2018;121:98–105.PubMedCrossRef
65.
go back to reference Naji M, Firoozabadi M, Azadfallah P. Emotion classification during music listening from forehead biosignals. Signal Image Video P. 2015;9:1365–75.CrossRef Naji M, Firoozabadi M, Azadfallah P. Emotion classification during music listening from forehead biosignals. Signal Image Video P. 2015;9:1365–75.CrossRef
66.
go back to reference Hatamikia S, Maghooli K, Nasrabadi AM. The emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals. J Med Signals Sens. 2014;4:194–201.PubMedPubMedCentralCrossRef Hatamikia S, Maghooli K, Nasrabadi AM. The emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals. J Med Signals Sens. 2014;4:194–201.PubMedPubMedCentralCrossRef
67.
go back to reference S.Y. Chung, H.J. Yoon, Affective classification using bayesian classifier and supervised learning, in 12th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2012, pp. 1768–1771. S.Y. Chung, H.J. Yoon, Affective classification using bayesian classifier and supervised learning, in 12th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2012, pp. 1768–1771.
68.
go back to reference Zhang X, Hu B, Chen J, Moore P. Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web. 2013;16:497–513.CrossRef Zhang X, Hu B, Chen J, Moore P. Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web. 2013;16:497–513.CrossRef
Metadata
Title
A Novel Approach for EEG Electrode Selection in Automated Emotion Recognition Based on Lagged Poincare’s Indices and sLORETA
Authors
Ateke Goshvarpour
Atefeh Goshvarpour
Publication date
03-12-2019
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2020
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09699-z

Other articles of this Issue 3/2020

Cognitive Computation 3/2020 Go to the issue

Premium Partner