Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2021

26-03-2021 | Research Article-Systems Engineering

A Novel Augmented Fractional-Order Fuzzy Controller for Enhanced Robustness in Nonlinear and Uncertain Systems with Optimal Actuator Exertion

Authors: Alka Agarwal, Puneet Mishra, Vishal Goyal

Published in: Arabian Journal for Science and Engineering | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An appropriate balance between the controller’s performance and its robustness is a complex design challenge. In order to enhance the control system performance, vigorous and rapid variations in controller output are often employed; however, this poses a critical challenge for practical implementations of the control schemes, as it may affect the actuator badly and may reduce its lifetime. To handle this issue, the current work presents an innovative control structure that aims to strike an apt balance between the control output variability while maintaining the desired control performance. The proposed control scheme exploits the abilities of fuzzy logic to cope with uncertainties in the system and along with the use of fractional calculus to enhance the control performance. Further, to evaluate the performance of the proposed improved fractional-order fuzzy controller (IFOFC), extensive simulation studies have been carried out on a multi-input–multi-output nonlinear system for a wide variety of test scenarios. An exhaustive comparative study with an inline state-of-art controller, i.e., fractional-order fuzzy PID (FOFPID) controller has also been carried out on two interesting performance measures. These performance measures include integral of time-weighted absolute error (ITAE) and another measure which corresponds to undesirable variations in the controller output, i.e., integral of the absolute change of torque (IACT). Based on the detailed simulation studies, it was found that the proposed control structure provides a fair balance between controller output aggression and control performance and also completely outperformed the FOFPID controller, even under large parametric variations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kürkçü, B.; Kasnakoğlu, C.: Robust Autopilot Design Based on a Disturbance/Uncertainty/Coupling Estimator. IEEE Trans. Control Syst. Technol. 27(6), 2622–2629 (2019)CrossRef Kürkçü, B.; Kasnakoğlu, C.: Robust Autopilot Design Based on a Disturbance/Uncertainty/Coupling Estimator. IEEE Trans. Control Syst. Technol. 27(6), 2622–2629 (2019)CrossRef
2.
go back to reference Mao, Q.; Dou, L.; Zong, Q.; Ding, Z.: Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control. Aerosp. Sci. Technol. 72, 36–48 (2018)CrossRef Mao, Q.; Dou, L.; Zong, Q.; Ding, Z.: Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control. Aerosp. Sci. Technol. 72, 36–48 (2018)CrossRef
3.
go back to reference Zhang, H.; Liu, J.; Xu, S.: H-infinity load frequency control of networked power systems via an event-triggered scheme. IEEE Trans. Industr. Electron. 67(8), 7104–7113 (2019)CrossRef Zhang, H.; Liu, J.; Xu, S.: H-infinity load frequency control of networked power systems via an event-triggered scheme. IEEE Trans. Industr. Electron. 67(8), 7104–7113 (2019)CrossRef
4.
go back to reference Ali, A.; Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)CrossRef Ali, A.; Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)CrossRef
5.
go back to reference Ali, A.; Majhi, S.: Integral criteria for optimal tuning of PI/PID controllers for integrating processes. Asian J. Control 13, 328–337 (2011)MathSciNetCrossRef Ali, A.; Majhi, S.: Integral criteria for optimal tuning of PI/PID controllers for integrating processes. Asian J. Control 13, 328–337 (2011)MathSciNetCrossRef
6.
go back to reference Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. Control Theory Appl. 148, 180–184 (2001)CrossRef Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. Control Theory Appl. 148, 180–184 (2001)CrossRef
7.
go back to reference Rao, A.S.; Rao, V.S.R.; Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Frankl. Inst. 346, 38–56 (2009)MathSciNetCrossRef Rao, A.S.; Rao, V.S.R.; Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Frankl. Inst. 346, 38–56 (2009)MathSciNetCrossRef
8.
go back to reference Ibanez, C.A.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)MathSciNetCrossRef Ibanez, C.A.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)MathSciNetCrossRef
9.
go back to reference Sánchez, J.R.G., et al.: Robust switched tracking control for wheeled mobile robots considering the actuators and drivers. Sensors 18, 4316 (2018)CrossRef Sánchez, J.R.G., et al.: Robust switched tracking control for wheeled mobile robots considering the actuators and drivers. Sensors 18, 4316 (2018)CrossRef
10.
go back to reference Rubio, J.D.J., et al.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)CrossRef Rubio, J.D.J., et al.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)CrossRef
11.
go back to reference Karunagaran, G.; Wenjian, C.: The parallel control structure for transparent online tuning. J. Process Control 21(7), 1072–1079 (2011)CrossRef Karunagaran, G.; Wenjian, C.: The parallel control structure for transparent online tuning. J. Process Control 21(7), 1072–1079 (2011)CrossRef
12.
go back to reference Goyal, V.; Mishra, P.; Deolia, V.K.: A robust fractional-order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics. Arab. J. Sci. Eng. 44(3), 2597–2611 (2018)CrossRef Goyal, V.; Mishra, P.; Deolia, V.K.: A robust fractional-order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics. Arab. J. Sci. Eng. 44(3), 2597–2611 (2018)CrossRef
13.
go back to reference Goyal, V.; Mishra, P.; Shukla, A.; Deolia, V.K.; Varshney, A.: A fractional-order parallel control structure tuned with meta-heuristic optimization algorithms for enhanced robustness. J. Electr Eng. 70(1), 16–24 (2019) Goyal, V.; Mishra, P.; Shukla, A.; Deolia, V.K.; Varshney, A.: A fractional-order parallel control structure tuned with meta-heuristic optimization algorithms for enhanced robustness. J. Electr Eng. 70(1), 16–24 (2019)
14.
15.
go back to reference Ardeshiri, R.R.; Khooban, M.H.; Noshadi, A., et al.: Robotic manipulator control based on an optimal fractional-order fuzzy PID approach: SiL real-time simulation. Soft Comput. 24, 3849–3860 (2020)CrossRef Ardeshiri, R.R.; Khooban, M.H.; Noshadi, A., et al.: Robotic manipulator control based on an optimal fractional-order fuzzy PID approach: SiL real-time simulation. Soft Comput. 24, 3849–3860 (2020)CrossRef
16.
go back to reference Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)CrossRef Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)CrossRef
17.
go back to reference Pan, Y.; Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)MathSciNetCrossRef Pan, Y.; Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)MathSciNetCrossRef
18.
go back to reference Li, W.; Chang, X.G.; Wahl, F.M.; Farrell, J.: Tracking control of a manipulator under uncertainty by Fuzzy P+ID controller. Fuzzy Sets Syst. 122, 125–137 (2001)MathSciNetCrossRef Li, W.; Chang, X.G.; Wahl, F.M.; Farrell, J.: Tracking control of a manipulator under uncertainty by Fuzzy P+ID controller. Fuzzy Sets Syst. 122, 125–137 (2001)MathSciNetCrossRef
19.
go back to reference Kumar, V.; Nakra, B.C.; Mittal, A.P.: Some Investigations on fuzzy P + Fuzzy I + fuzzy D controller for non-stationary process. Int. J. Autom. Comput. 9(5), 449–458 (2012)CrossRef Kumar, V.; Nakra, B.C.; Mittal, A.P.: Some Investigations on fuzzy P + Fuzzy I + fuzzy D controller for non-stationary process. Int. J. Autom. Comput. 9(5), 449–458 (2012)CrossRef
20.
go back to reference Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42(22), 8533–8549 (2015)CrossRef Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42(22), 8533–8549 (2015)CrossRef
21.
go back to reference Nithilasaravanan, K.; Thakwani, N.; Mishra, P.; Kumar, V.; Rana, K.P.S.: Efficient control of integrated power system using self-tuned fractional-order fuzzy PID controller. Neural Comput. Appl. 31(8), 4137–4155 (2019)CrossRef Nithilasaravanan, K.; Thakwani, N.; Mishra, P.; Kumar, V.; Rana, K.P.S.: Efficient control of integrated power system using self-tuned fractional-order fuzzy PID controller. Neural Comput. Appl. 31(8), 4137–4155 (2019)CrossRef
22.
go back to reference Das, S.; Pan, I.; Gupta, A.: A novel fractional-order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25, 430–442 (2012)CrossRef Das, S.; Pan, I.; Gupta, A.: A novel fractional-order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25, 430–442 (2012)CrossRef
23.
go back to reference Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional-orderhybrid fuzzy PID controllers for handling oscillatory fractional-order processes with dead time. ISA Trans. 52, 550–566 (2013)CrossRef Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional-orderhybrid fuzzy PID controllers for handling oscillatory fractional-order processes with dead time. ISA Trans. 52, 550–566 (2013)CrossRef
24.
go back to reference Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra, P.: A robust fractional-order fuzzy P + fuzzy I + fuzzy D controller for nonlinear and uncertain system. Int. J. Autom. Comput. 14, 474–488 (2017)CrossRef Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra, P.: A robust fractional-order fuzzy P + fuzzy I + fuzzy D controller for nonlinear and uncertain system. Int. J. Autom. Comput. 14, 474–488 (2017)CrossRef
25.
go back to reference Mishra, P.; Kumar, V.; Rana, K.P.S.: Robust speed control of hybrid electric vehicle using fractional-order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353(8), 1713–1741 (2016)MathSciNetCrossRef Mishra, P.; Kumar, V.; Rana, K.P.S.: Robust speed control of hybrid electric vehicle using fractional-order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353(8), 1713–1741 (2016)MathSciNetCrossRef
26.
go back to reference Sharma, R.; Rana, K.P.S.; Kumar, V.: Performance analysis of fractional-order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 11335–11346 (2014) Sharma, R.; Rana, K.P.S.; Kumar, V.: Performance analysis of fractional-order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 11335–11346 (2014)
27.
go back to reference Kanagaraj, N.: Design and Performance Evaluation of Fuzzy Variable fractional-order [PI]λDµ Controller for a Class of First-Order Delay Time Systems. Stud. Inform. Control 28(4), 443–452 (2019)MathSciNetCrossRef Kanagaraj, N.: Design and Performance Evaluation of Fuzzy Variable fractional-order [PI]λDµ Controller for a Class of First-Order Delay Time Systems. Stud. Inform. Control 28(4), 443–452 (2019)MathSciNetCrossRef
28.
go back to reference Kumar, V.; Rana, K.P.S.: Nonlinear adaptive fractional-order fuzzy PID control of a 2-link planar rigid manipulator with payload. J. Franklin Inst. 354(2), 993–1022 (2017)MathSciNetCrossRef Kumar, V.; Rana, K.P.S.: Nonlinear adaptive fractional-order fuzzy PID control of a 2-link planar rigid manipulator with payload. J. Franklin Inst. 354(2), 993–1022 (2017)MathSciNetCrossRef
29.
go back to reference Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra P.: Self-Tuned Robust Fractional-order Fuzzy PD Controller for Uncertain Nonlinear Active Suspension System, Neural Comput. Applic., 1–17, 2016. Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra P.: Self-Tuned Robust Fractional-order Fuzzy PD Controller for Uncertain Nonlinear Active Suspension System, Neural Comput. Applic., 1–17, 2016.
30.
go back to reference Kumar, J.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PD+I controller for three-link electrically driven rigid robotic manipulator system. J. Intell. Fuzzy Syst. 35(5), 5287–5299 (2018)CrossRef Kumar, J.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PD+I controller for three-link electrically driven rigid robotic manipulator system. J. Intell. Fuzzy Syst. 35(5), 5287–5299 (2018)CrossRef
31.
go back to reference Kumar, J.; Kumar, V.; Rana, K.P.S.: Design of Robust Fractional-order Fuzzy Sliding Mode PID Controller for Two-link Robotic Manipulator System. J. Intell. Fuzzy Syst 35(5), 5301–5315 (2018)CrossRef Kumar, J.; Kumar, V.; Rana, K.P.S.: Design of Robust Fractional-order Fuzzy Sliding Mode PID Controller for Two-link Robotic Manipulator System. J. Intell. Fuzzy Syst 35(5), 5301–5315 (2018)CrossRef
32.
go back to reference Kumar, J.; Kumar, V.; Rana, K.P.S.: Fractional-order self-tuned fuzzy PID controller for three-link robotic manipulator system. Neural Comput. Appl. 32, 7235–7257 (2020)CrossRef Kumar, J.; Kumar, V.; Rana, K.P.S.: Fractional-order self-tuned fuzzy PID controller for three-link robotic manipulator system. Neural Comput. Appl. 32, 7235–7257 (2020)CrossRef
33.
go back to reference Sharma, R.; Bhasin, S.; Gaur, P.; Joshi, D.: A switching based collaborative fractional-order fuzzy logic controllers for robotic manipulator. Appl. Math. Model. 73, 228–246 (2019)MathSciNetCrossRef Sharma, R.; Bhasin, S.; Gaur, P.; Joshi, D.: A switching based collaborative fractional-order fuzzy logic controllers for robotic manipulator. Appl. Math. Model. 73, 228–246 (2019)MathSciNetCrossRef
34.
go back to reference Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNetMATH Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNetMATH
35.
go back to reference Yang, X.S.; Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRef Yang, X.S.; Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRef
36.
go back to reference Martinez, D.I., et al.: Stabilization of Robots with a Regulator Containing the Sigmoid Mapping. IEEE Access 8(1), 89479–89488 (2020)CrossRef Martinez, D.I., et al.: Stabilization of Robots with a Regulator Containing the Sigmoid Mapping. IEEE Access 8(1), 89479–89488 (2020)CrossRef
Metadata
Title
A Novel Augmented Fractional-Order Fuzzy Controller for Enhanced Robustness in Nonlinear and Uncertain Systems with Optimal Actuator Exertion
Authors
Alka Agarwal
Puneet Mishra
Vishal Goyal
Publication date
26-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05508-8

Other articles of this Issue 10/2021

Arabian Journal for Science and Engineering 10/2021 Go to the issue

Research Article-Electrical Engineering

Advanced Relaying for DG-Penetrated Distribution System

Premium Partners