Skip to main content
Top
Published in: Engineering with Computers 3/2023

05-02-2022 | Original Article

A novel conjoined space–time formulation for explicit analyses of dynamic models

Author: Delfim Soares Jr.

Published in: Engineering with Computers | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel explicit time-marching procedure is proposed, which adapts to the properties of the spatially discretized model. In this context, the time integrators of the method are locally defined, following the physical/geometrical features of the elements of the adopted spatial discretization, in a way that reduced dissipative and dispersive errors are provided, as well as extended stability limits are enabled. As it is discussed along this manuscript, the proposed novel conjoined space–time solution procedure is very simple to implement and to apply and it allows enhanced performances, providing better accuracy and more efficient analyses than standard time integration techniques. At the end of the paper, numerical results are presented, illustrating the versatility and effectiveness of the proposed new methodology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC., New YorkMATH Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC., New YorkMATH
2.
go back to reference Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, New JerseyMATH Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, New JerseyMATH
3.
go back to reference Zienkiewicz OC, Xie YM (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthq Eng Struct Dynam 20:871–887CrossRef Zienkiewicz OC, Xie YM (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthq Eng Struct Dynam 20:871–887CrossRef
4.
go back to reference Choi CK, Chung HJ (1996) Error estimates and adaptive time stepping for various direct time integration methods. Comput Struct 60:923–944MathSciNetCrossRefMATH Choi CK, Chung HJ (1996) Error estimates and adaptive time stepping for various direct time integration methods. Comput Struct 60:923–944MathSciNetCrossRefMATH
6.
go back to reference Rossi DF, Ferreira WG, Mansur WJ, Calenzani AFG (2014) A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis. Eng Struct 80:118–136CrossRef Rossi DF, Ferreira WG, Mansur WJ, Calenzani AFG (2014) A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis. Eng Struct 80:118–136CrossRef
7.
go back to reference Wang Y, Xue T, Tamma KK, Maxam D, Qin G (2021) A three-time-level a posteriori error estimator for GS4–2 framework: adaptive time stepping for second-order transient systems. Comput Methods Appl Mech Eng 384:113920MathSciNetCrossRefMATH Wang Y, Xue T, Tamma KK, Maxam D, Qin G (2021) A three-time-level a posteriori error estimator for GS4–2 framework: adaptive time stepping for second-order transient systems. Comput Methods Appl Mech Eng 384:113920MathSciNetCrossRefMATH
8.
go back to reference Daniel WJT (1997) Analysis and implementation of a new constant acceleration subcycling algorithm. Int J Numer Meth Eng 40:2841–2855CrossRefMATH Daniel WJT (1997) Analysis and implementation of a new constant acceleration subcycling algorithm. Int J Numer Meth Eng 40:2841–2855CrossRefMATH
9.
go back to reference Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Meth Eng 50:199–225CrossRefMATH Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Meth Eng 50:199–225CrossRefMATH
10.
go back to reference Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36:1804–1841MathSciNetCrossRefMATH Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36:1804–1841MathSciNetCrossRefMATH
11.
go back to reference Silva JEA, Loureiro FS, Mansur WJ, Wrobel LC (2018) An efficient multi-time step FEM–SFEM iterative coupling procedure for elastic–acoustic interaction problems. J Br Soc Mech Sci Eng 40:364CrossRef Silva JEA, Loureiro FS, Mansur WJ, Wrobel LC (2018) An efficient multi-time step FEM–SFEM iterative coupling procedure for elastic–acoustic interaction problems. J Br Soc Mech Sci Eng 40:364CrossRef
12.
go back to reference Soares D (2016) A simple and effective single-step time marching technique based on adaptive time integrators. Int J Numer Meth Eng 109:1344–1368MathSciNetCrossRef Soares D (2016) A simple and effective single-step time marching technique based on adaptive time integrators. Int J Numer Meth Eng 109:1344–1368MathSciNetCrossRef
13.
go back to reference Soares D (2020) A novel time-marching formulation for wave propagation analysis: the adaptive hybrid explicit method. Comput Methods Appl Mech Eng 366:113095MathSciNetCrossRefMATH Soares D (2020) A novel time-marching formulation for wave propagation analysis: the adaptive hybrid explicit method. Comput Methods Appl Mech Eng 366:113095MathSciNetCrossRefMATH
14.
go back to reference Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:113647MathSciNetCrossRefMATH Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:113647MathSciNetCrossRefMATH
16.
go back to reference Soares D (2019) A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis. Int J Numer Methods Eng 119:590–617MathSciNetCrossRef Soares D (2019) A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis. Int J Numer Methods Eng 119:590–617MathSciNetCrossRef
17.
go back to reference Soares D (2019) An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. Comput Methods Appl Mech Eng 354:637–662MathSciNetCrossRefMATH Soares D (2019) An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. Comput Methods Appl Mech Eng 354:637–662MathSciNetCrossRefMATH
18.
go back to reference Soares D, Rodrigues MM (2021) An optimized explicit–implicit time-marching formulation for dynamic analysis. Int J Comput Methods 18:2050045MathSciNetCrossRefMATH Soares D, Rodrigues MM (2021) An optimized explicit–implicit time-marching formulation for dynamic analysis. Int J Comput Methods 18:2050045MathSciNetCrossRefMATH
19.
go back to reference Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Division ASCE 85:67–94CrossRef Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Division ASCE 85:67–94CrossRef
20.
go back to reference Chung J, Hulbert JM (1993) A time integration method for structural dynamics with improved numerical dissipation: the generalized α method. J Appl Mech 30:371–375CrossRefMATH Chung J, Hulbert JM (1993) A time integration method for structural dynamics with improved numerical dissipation: the generalized α method. J Appl Mech 30:371–375CrossRefMATH
21.
go back to reference Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83:2513–2534MathSciNetCrossRef Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83:2513–2534MathSciNetCrossRef
22.
go back to reference Scuciato RF, Carrer JAM, Mansur WJ (2017) The time-dependent boundary element method formulation applied to dynamic analysis of Euler-Bernoulli beams: the linear θ method. Eng Anal Bound Elem 79:98–109MathSciNetCrossRefMATH Scuciato RF, Carrer JAM, Mansur WJ (2017) The time-dependent boundary element method formulation applied to dynamic analysis of Euler-Bernoulli beams: the linear θ method. Eng Anal Bound Elem 79:98–109MathSciNetCrossRefMATH
23.
go back to reference Kim W (2020) An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithm. Appl Math Model 81:910–930MathSciNetCrossRefMATH Kim W (2020) An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithm. Appl Math Model 81:910–930MathSciNetCrossRefMATH
24.
go back to reference Malakiyeh MM, Shojaee S, Hamzehei-Javaran S, Bathe KJ (2021) New insights into the β1/β2-Bathe time integration scheme when L-stable. Comput Struct 245:106433CrossRef Malakiyeh MM, Shojaee S, Hamzehei-Javaran S, Bathe KJ (2021) New insights into the β1/β2-Bathe time integration scheme when L-stable. Comput Struct 245:106433CrossRef
25.
go back to reference Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137:175–188MathSciNetCrossRefMATH Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137:175–188MathSciNetCrossRefMATH
26.
go back to reference Souza LA, Carrer JAM, Martins CJ (2004) A fourth order finite difference method applied to elastodynamics: finite element and boundary element formulations. Struct Eng Mech 17:735–749CrossRef Souza LA, Carrer JAM, Martins CJ (2004) A fourth order finite difference method applied to elastodynamics: finite element and boundary element formulations. Struct Eng Mech 17:735–749CrossRef
27.
go back to reference Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef
28.
go back to reference Soares D (2016) A novel family of explicit time marching techniques for structural dynamics and wave propagation. Comput Methods Appl Mech Eng 311:838–855MathSciNetCrossRefMATH Soares D (2016) A novel family of explicit time marching techniques for structural dynamics and wave propagation. Comput Methods Appl Mech Eng 311:838–855MathSciNetCrossRefMATH
29.
go back to reference Wen W, Duan S, Tao Y, Liang J, Fang D (2017) An explicit time integration scheme based on B-spline interpolation and its application in wave propagation analysis. Int J Appl Mech 9:1750115CrossRef Wen W, Duan S, Tao Y, Liang J, Fang D (2017) An explicit time integration scheme based on B-spline interpolation and its application in wave propagation analysis. Int J Appl Mech 9:1750115CrossRef
30.
go back to reference Zhang HM, Xing YF (2019) Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Comput Struct 221:127–141CrossRef Zhang HM, Xing YF (2019) Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Comput Struct 221:127–141CrossRef
31.
go back to reference Kim W (2019) An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Int J Numer Meth Eng 120:1–28MathSciNetCrossRef Kim W (2019) An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Int J Numer Meth Eng 120:1–28MathSciNetCrossRef
32.
go back to reference Wen W, Deng S, Duan S, Fang D (2021) A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics. Int J Numer Meth Eng 122:431–454MathSciNetCrossRef Wen W, Deng S, Duan S, Fang D (2021) A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics. Int J Numer Meth Eng 122:431–454MathSciNetCrossRef
33.
go back to reference Zhang J, Ankit A, Gravenkamp H, Eisenträger S, Song C (2021) A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes. Computer Methods in Appl Mech Eng 380:113811MathSciNetCrossRefMATH Zhang J, Ankit A, Gravenkamp H, Eisenträger S, Song C (2021) A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes. Computer Methods in Appl Mech Eng 380:113811MathSciNetCrossRefMATH
34.
go back to reference Soares D (2015) A simple and effective new family of time marching procedures for dynamics. Comput Methods Appl Mech Eng 283:1138–1166MathSciNetCrossRefMATH Soares D (2015) A simple and effective new family of time marching procedures for dynamics. Comput Methods Appl Mech Eng 283:1138–1166MathSciNetCrossRefMATH
35.
go back to reference Fried I (1972) Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J Sound Vib 22:407–418CrossRefMATH Fried I (1972) Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J Sound Vib 22:407–418CrossRefMATH
Metadata
Title
A novel conjoined space–time formulation for explicit analyses of dynamic models
Author
Delfim Soares Jr.
Publication date
05-02-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 3/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01565-7

Other articles of this Issue 3/2023

Engineering with Computers 3/2023 Go to the issue