Skip to main content
Top
Published in: Engineering with Computers 3/2023

31-01-2022 | Original Article

Analysis of the nanoscale heat transport and Lorentz force based on the time-dependent Cross nanofluid

Authors: Assad Ayub, Zulqurnain sabir, Hafiz A. Wahab, Mohammed Balubaid, S. R. Mahmoud, Mohamed R. Ali, R. Sadat

Published in: Engineering with Computers | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Control of transport of energy by means of external force effects is one of the most important problems in modern applied mathematics. Magnetic force has an influence on heat transport phenomena and has various applications in industrial, engineering, and medical sciences. The root theme of this work is to study MHD flow with stagnation point and flow of Cross nanofluid in contracting/extracting cylinder. The impacts of variable thermal conductivity, Lorentz’s force on unsteady Cross nanofluid and the cylindrical coordinate are investigated using the behavior of expanding/contracting cylinder. Discovering the impacts of physical parameters on movement, energy exchange and mass transport visibility of Cross nanofluid flow with respect to region (shear thinning/thickening) and on the basis of geometry (contracting/extracting) is most interesting and beauty of this attempt. Smooth debate on fluid behavior in light of numerical outcome classifying shear thinning/thickening and contracting/extracting of geometry is disclosed comprehensively. By keeping the idea of shooting methodology, the nonlinear higher order differential equations are converted into a first-order system of ordinary differential equations. Furthermore, bvp4c Matlab built-in command is used for comparison of the numerical solutions to solve these linear ordinary differential equations. The numerical solutions are plotted in figures as well as tabulated in some tables.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi SUS, Jeffrey AE (1995) Enhancing thermal conductivity of fluids with nanoparticles No. ANL/MSD/CP-84938; CONF-951135–29. In: Argonne National Lab., IL, United States Choi SUS, Jeffrey AE (1995) Enhancing thermal conductivity of fluids with nanoparticles No. ANL/MSD/CP-84938; CONF-951135–29. In: Argonne National Lab., IL, United States
2.
go back to reference Sheikholeslami M et al (2013) Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technol 247:87–94 Sheikholeslami M et al (2013) Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technol 247:87–94
3.
go back to reference Abolbashari MH et al (2014) Entropy analysis for an unsteady MHD flow pas a stretching permeable surface in nano-fluid. Powder Technol 267:256–267 Abolbashari MH et al (2014) Entropy analysis for an unsteady MHD flow pas a stretching permeable surface in nano-fluid. Powder Technol 267:256–267
4.
go back to reference Rashidi MM et al (2014) Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl Math Mech 35(7):831–848MathSciNet Rashidi MM et al (2014) Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl Math Mech 35(7):831–848MathSciNet
5.
go back to reference Freidoonimehr N, Mohammad MR, Shohel M (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Thermal Sci 87:136–145 Freidoonimehr N, Mohammad MR, Shohel M (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Thermal Sci 87:136–145
8.
go back to reference Shah SZ, Wahab HA, Ayub A, Sabir Z, Haider A, Shah SL (2021) Higher order chemical process with heat transport of magnetized cross nanofluid over wedge geometry. Heat Transfer 50(4):3196–3219 Shah SZ, Wahab HA, Ayub A, Sabir Z, Haider A, Shah SL (2021) Higher order chemical process with heat transport of magnetized cross nanofluid over wedge geometry. Heat Transfer 50(4):3196–3219
10.
go back to reference Ayub A, Wahab HA, Shah SZ, Shah SL, Darvesh A, Haider A, Sabir Z (2021) Interpretation of infinite shear rate viscosity and a nonuniform heat sink/source on a 3D radiative cross nanofluid with buoyancy assisting/opposing flow. Heat Transfer 50(5):4192–4232 Ayub A, Wahab HA, Shah SZ, Shah SL, Darvesh A, Haider A, Sabir Z (2021) Interpretation of infinite shear rate viscosity and a nonuniform heat sink/source on a 3D radiative cross nanofluid with buoyancy assisting/opposing flow. Heat Transfer 50(5):4192–4232
12.
go back to reference Ayub A, Wahab HA, Hussain Shah SZ, Shah SL, et al (2021) On heated surface transport of heat bearing thermal radiation and MHD Cross flow with effects of nonuniform heat sink/source and buoyancy opposing/assisting flow. Heat Transfer 50(6):6110–6128 Ayub A, Wahab HA, Hussain Shah SZ, Shah SL, et al (2021) On heated surface transport of heat bearing thermal radiation and MHD Cross flow with effects of nonuniform heat sink/source and buoyancy opposing/assisting flow. Heat Transfer 50(6):6110–6128
13.
go back to reference Jafari SS, Freidoonimehr N (2015) Second law of thermodynamics analysis of hydro-magnetic nano-fluid slip flow over a stretching permeable surface. J Braz Soc Mech Sci Eng 37(4):1245–1256 Jafari SS, Freidoonimehr N (2015) Second law of thermodynamics analysis of hydro-magnetic nano-fluid slip flow over a stretching permeable surface. J Braz Soc Mech Sci Eng 37(4):1245–1256
14.
go back to reference Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49(9):1663–1668 Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49(9):1663–1668
15.
go back to reference Rashidi MM et al (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5(3):901–912 Rashidi MM et al (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5(3):901–912
18.
go back to reference Umar M, Sabir Z, Imran A, Wahab AH, Shoaib M, Raja MAZ (2020) The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm Sci 24(5 Part A):2929–2939 Umar M, Sabir Z, Imran A, Wahab AH, Shoaib M, Raja MAZ (2020) The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm Sci 24(5 Part A):2929–2939
19.
go back to reference Sabir Z, Imran A, Umar M, Zeb M, Shoaib M, Raja MAZ (2020) A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm Sci 00:186–186 Sabir Z, Imran A, Umar M, Zeb M, Shoaib M, Raja MAZ (2020) A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm Sci 00:186–186
20.
go back to reference Wu KJ et al (2015) Smartphone-enabled device for the monitoring of blood volume variations using magnetohydrodynamic voltages. Circulation 132(Suppl_3):A16689 Wu KJ et al (2015) Smartphone-enabled device for the monitoring of blood volume variations using magnetohydrodynamic voltages. Circulation 132(Suppl_3):A16689
21.
go back to reference Sheikholeslami M, Shehzad SA (2018) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271 Sheikholeslami M, Shehzad SA (2018) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271
22.
go back to reference Sheikholeslami M, Li Z, Shamlooei M (2018) Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A 382(24):1615–1632MathSciNet Sheikholeslami M, Li Z, Shamlooei M (2018) Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A 382(24):1615–1632MathSciNet
23.
go back to reference Abdulhameed M, Vieru D, Roslan R (2017) Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A 484:233–252MathSciNetMATH Abdulhameed M, Vieru D, Roslan R (2017) Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A 484:233–252MathSciNetMATH
24.
go back to reference Brusentsov NA et al (2007) Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors. J Magnet Magnet Mater 311(1):176–180 Brusentsov NA et al (2007) Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors. J Magnet Magnet Mater 311(1):176–180
25.
go back to reference Brusentsov NA et al (2012) Magnetohydrodynamic thermochemotherapy and MRI of malignant tumorigenesis. Solid State Phenom 190:717–720 (Trans Tech Publications) Brusentsov NA et al (2012) Magnetohydrodynamic thermochemotherapy and MRI of malignant tumorigenesis. Solid State Phenom 190:717–720 (Trans Tech Publications)
26.
go back to reference Brusentsov NA et al (2008) Magnetohydrodynamic thermochemotherapy of malignant tumors with nanopreparations with magnetic resonance monitoring. Pharm Chem J 42(4):157–164 Brusentsov NA et al (2008) Magnetohydrodynamic thermochemotherapy of malignant tumors with nanopreparations with magnetic resonance monitoring. Pharm Chem J 42(4):157–164
27.
go back to reference Sheikholeslami M, Mollabasi H, Ganji DD (2015) Analytical investigation of MHD Jeffery-Hamel nanofluid flow in non-parallel walls. Int J Nanosci Nanotechnol 11(4):241–248 Sheikholeslami M, Mollabasi H, Ganji DD (2015) Analytical investigation of MHD Jeffery-Hamel nanofluid flow in non-parallel walls. Int J Nanosci Nanotechnol 11(4):241–248
28.
go back to reference Severo DS et al (2005) Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX. Light Metals 2005:475–480 Severo DS et al (2005) Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX. Light Metals 2005:475–480
29.
go back to reference Steg L., Sutton GW (1960) The prospects of MHD power generation. Astronautics 5:158–174 Steg L., Sutton GW (1960) The prospects of MHD power generation. Astronautics 5:158–174
30.
go back to reference Scannell EP (1980) Gaseous electrode for MHD generator. U.S. Patent No. 4,185,213 Scannell EP (1980) Gaseous electrode for MHD generator. U.S. Patent No. 4,185,213
31.
go back to reference Brogan TR and Powers Jr WE (1969) Magnetohydrodynamic motor-generator. U.S. Patent No. 3,436,918 Brogan TR and Powers Jr WE (1969) Magnetohydrodynamic motor-generator. U.S. Patent No. 3,436,918
32.
go back to reference Micci MM, Caveny LH (1982) MHD measurement of acoustic velocities in rocket motor chambers. AIAA J 20(4):516–521 Micci MM, Caveny LH (1982) MHD measurement of acoustic velocities in rocket motor chambers. AIAA J 20(4):516–521
33.
go back to reference Davidson PA (1999) Magnetohydrodynamics in materials processing. Annu Rev Fluid Mech 31(1):273–300 Davidson PA (1999) Magnetohydrodynamics in materials processing. Annu Rev Fluid Mech 31(1):273–300
34.
go back to reference Pu ZY et al (1997) MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet and its application to substorm onset. J Geophys Res Space Phys 102(A7):14397–14406 Pu ZY et al (1997) MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet and its application to substorm onset. J Geophys Res Space Phys 102(A7):14397–14406
35.
go back to reference Ghiasi M et al (2011) Psoriasis and increased prevalence of hypertension and diabetes mellitus. Indian J Dermatol 56(5):533 Ghiasi M et al (2011) Psoriasis and increased prevalence of hypertension and diabetes mellitus. Indian J Dermatol 56(5):533
36.
go back to reference Zohdi M et al (2012) Data envelopment analysis (DEA) based performance evaluation system for investment companies: case study of Tehran Stock Exchange. Afr J Bus Manage 6(16):5573–5577 Zohdi M et al (2012) Data envelopment analysis (DEA) based performance evaluation system for investment companies: case study of Tehran Stock Exchange. Afr J Bus Manage 6(16):5573–5577
37.
go back to reference Raftari B, Yildirim A (2010) The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comput Math Appl 59(10):3328–3337MathSciNetMATH Raftari B, Yildirim A (2010) The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comput Math Appl 59(10):3328–3337MathSciNetMATH
38.
go back to reference Mahapatra TR, Nandy SK, Gupta AS (2009) Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Int J Non-Linear Mech 44(2):124–129MATH Mahapatra TR, Nandy SK, Gupta AS (2009) Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Int J Non-Linear Mech 44(2):124–129MATH
39.
go back to reference Bhattacharyya S, Gupta AS (1998) MHD flow and heat transfer at a general three-dimensional stagnation point. Int J Non-Linear Mech 33(1):125–134MATH Bhattacharyya S, Gupta AS (1998) MHD flow and heat transfer at a general three-dimensional stagnation point. Int J Non-Linear Mech 33(1):125–134MATH
40.
go back to reference Esfe MH et al (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119(3):1817–1824MathSciNet Esfe MH et al (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119(3):1817–1824MathSciNet
41.
go back to reference Nandy SK, Mahapatra TR (2013) Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions. Int J Heat Mass Transfer 64:1091–1100 Nandy SK, Mahapatra TR (2013) Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions. Int J Heat Mass Transfer 64:1091–1100
42.
go back to reference El-Kabeir SMM et al (2019) Unsteady MHD slip flow of a ferrofluid over an impulsively stretched vertical surface. AIP Adv 9(4):045112 El-Kabeir SMM et al (2019) Unsteady MHD slip flow of a ferrofluid over an impulsively stretched vertical surface. AIP Adv 9(4):045112
43.
go back to reference Pekmen B, Tezer-Sezgin M (2015) DRBEM solution of MHD flow with magnetic induction and heat transfer. Comput Model Eng Sci 105(3):183–207MATH Pekmen B, Tezer-Sezgin M (2015) DRBEM solution of MHD flow with magnetic induction and heat transfer. Comput Model Eng Sci 105(3):183–207MATH
44.
go back to reference Das S, Jana RN, Makinde OD (2015) Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating. Alex Eng J 54(2):251–261 Das S, Jana RN, Makinde OD (2015) Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating. Alex Eng J 54(2):251–261
45.
go back to reference Singh G, Makinde OD (2015) Mixed convection slip flow with temperature jump along a moving plate in presence of free stream. Therm Sci 19(1):119–128 Singh G, Makinde OD (2015) Mixed convection slip flow with temperature jump along a moving plate in presence of free stream. Therm Sci 19(1):119–128
47.
go back to reference Sabir Z, Imran A, Umar M, Zeb M, Shoaib M, Zahoor Raja MA (2021) A numerical approach for 2-D Sutterby fluid-flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm Sci 25:1975–1987 Sabir Z, Imran A, Umar M, Zeb M, Shoaib M, Zahoor Raja MA (2021) A numerical approach for 2-D Sutterby fluid-flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm Sci 25:1975–1987
49.
go back to reference Sheikholeslami M, Abelman S, Ganji DD (2014) Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int J Heat Mass Transfer 79:212–222 Sheikholeslami M, Abelman S, Ganji DD (2014) Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int J Heat Mass Transfer 79:212–222
50.
go back to reference Zhang J-K, Li B-W, Chen Y-Y (2013) Hall effects on natural convection of participating MHD with thermal radiation in a cavity. Int J Heat Mass Transf 66:838–843 Zhang J-K, Li B-W, Chen Y-Y (2013) Hall effects on natural convection of participating MHD with thermal radiation in a cavity. Int J Heat Mass Transf 66:838–843
51.
go back to reference Ali MR (2021) The method of lines analysis of heat transfer of Ostwald-de Waele fluid generated by a non-uniform rotating disk with a variable thickness. J Appl Comput Mech 7(2):432–441 Ali MR (2021) The method of lines analysis of heat transfer of Ostwald-de Waele fluid generated by a non-uniform rotating disk with a variable thickness. J Appl Comput Mech 7(2):432–441
52.
go back to reference Srinivas S, Malathy T, Subramanyam Reddy A (2016) A note on thermal-diffusion and chemical reaction effects on MHD pulsating flow in a porous channel with slip and convective boundary conditions. J King Saud Univ-Eng Sci 28(2):213–221 Srinivas S, Malathy T, Subramanyam Reddy A (2016) A note on thermal-diffusion and chemical reaction effects on MHD pulsating flow in a porous channel with slip and convective boundary conditions. J King Saud Univ-Eng Sci 28(2):213–221
53.
go back to reference Swapna G et al (2015) Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition. J Taiwan Inst Chem Eng 47:18–27 Swapna G et al (2015) Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition. J Taiwan Inst Chem Eng 47:18–27
54.
go back to reference Mabood F, Khan WA, Md Ismail AI (2015) MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chem Eng J 273:430–437 Mabood F, Khan WA, Md Ismail AI (2015) MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chem Eng J 273:430–437
55.
go back to reference Hayat T et al (2017) Mixed convection stagnation-point flow of Powell-Eyring fluid with Newtonian heating, thermal radiation, and heat generation/absorption. J Aerosp Eng 30(1):04016077 Hayat T et al (2017) Mixed convection stagnation-point flow of Powell-Eyring fluid with Newtonian heating, thermal radiation, and heat generation/absorption. J Aerosp Eng 30(1):04016077
56.
go back to reference Narayana PVS, Harish Babu D (2016) Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J Taiwan Inst Chem Eng 59:18–25 Narayana PVS, Harish Babu D (2016) Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J Taiwan Inst Chem Eng 59:18–25
57.
go back to reference Kuang Z-B (2015) Energy and entropy equations in coupled nonequilibrium thermal mechanical diffusive chemical heterogeneous system. Sci Bull 60(10):952–957 Kuang Z-B (2015) Energy and entropy equations in coupled nonequilibrium thermal mechanical diffusive chemical heterogeneous system. Sci Bull 60(10):952–957
58.
go back to reference Mason EA, Marrero TR (1970) The diffusion of atoms and molecules. Adv Atom Mol Phys 6:155–232 (Academic Press) Mason EA, Marrero TR (1970) The diffusion of atoms and molecules. Adv Atom Mol Phys 6:155–232 (Academic Press)
59.
go back to reference Demirel Y (2009) Thermodynamically coupled heat and mass flows in a reaction-transport system with external resistances. Int J Heat Mass Transf 52(7–8):2018–2025MATH Demirel Y (2009) Thermodynamically coupled heat and mass flows in a reaction-transport system with external resistances. Int J Heat Mass Transf 52(7–8):2018–2025MATH
60.
go back to reference Deen WM (1998) Analysis of transport phenomena. New York: Oxford university press Deen WM (1998) Analysis of transport phenomena. New York: Oxford university press
61.
go back to reference Flytzani-Stephanopoulos M, Schmidt LD (1979) Morphology and etching processes on macroscopic metal catalysts. Prog Surf Sci 9(3):83–111 Flytzani-Stephanopoulos M, Schmidt LD (1979) Morphology and etching processes on macroscopic metal catalysts. Prog Surf Sci 9(3):83–111
62.
go back to reference Ortiz de Zárate JM et al (2007) Concentration fluctuations in nonisothermal reaction-diffusion systems. J Chem Phys 127(3):034501 Ortiz de Zárate JM et al (2007) Concentration fluctuations in nonisothermal reaction-diffusion systems. J Chem Phys 127(3):034501
63.
go back to reference Hu S, Shen S (2013) Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mech 224(12):2895–2910MathSciNetMATH Hu S, Shen S (2013) Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mech 224(12):2895–2910MathSciNetMATH
64.
go back to reference Azam M, Khan M, Alshomrani AS (2017) Unsteady radiative stagnation point flow of MHD Carreau nanofluid over expanding/contracting cylinder. Int J Mech Sci 130:64–73 Azam M, Khan M, Alshomrani AS (2017) Unsteady radiative stagnation point flow of MHD Carreau nanofluid over expanding/contracting cylinder. Int J Mech Sci 130:64–73
65.
go back to reference Lok YY, Pop I (2011) Wang’s shrinking cylinder problem with suction near a stagnation point. Phys Fluids 23(8):083102MATH Lok YY, Pop I (2011) Wang’s shrinking cylinder problem with suction near a stagnation point. Phys Fluids 23(8):083102MATH
66.
go back to reference Yusuf A, Sulaiman TA, Inc M, Bayram M (2020) Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. Eur Phys J Plus 135(7):1–8 Yusuf A, Sulaiman TA, Inc M, Bayram M (2020) Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. Eur Phys J Plus 135(7):1–8
67.
go back to reference Abdel-Gawad HI, Tantawy M, Inc M, Yusuf A (2020) Construction of rogue waves and conservation laws of the complex coupled Kadomtsev-Petviashvili equation. Int J Mod Phys B 34(12):2050115MathSciNetMATH Abdel-Gawad HI, Tantawy M, Inc M, Yusuf A (2020) Construction of rogue waves and conservation laws of the complex coupled Kadomtsev-Petviashvili equation. Int J Mod Phys B 34(12):2050115MathSciNetMATH
68.
go back to reference Yusuf A, Tchier F, Inc M (2020) New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation. Eur Phys J Plus 135(5):1–8 Yusuf A, Tchier F, Inc M (2020) New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation. Eur Phys J Plus 135(5):1–8
69.
go back to reference Wang S, Yousefpour A, Yusuf A, Jahanshahi H, Alcaraz R, He S, Munoz-Pacheco JM (2020) Synchronization of a non-equilibrium four-dimensional chaotic system using a disturbance-observer-based adaptive terminal sliding mode control method. Entropy 22(3):271MathSciNet Wang S, Yousefpour A, Yusuf A, Jahanshahi H, Alcaraz R, He S, Munoz-Pacheco JM (2020) Synchronization of a non-equilibrium four-dimensional chaotic system using a disturbance-observer-based adaptive terminal sliding mode control method. Entropy 22(3):271MathSciNet
70.
go back to reference Singh S, Sakthivel R, Inc M, Yusuf A, Murugesan K (2020) Dynamics of optical solitons and conservation laws of a new (2+ 1)-dimensional integrable nonlinear evolution equation in deep water oceanic waves. Mod Phys Lett B 34(05):2050068MathSciNet Singh S, Sakthivel R, Inc M, Yusuf A, Murugesan K (2020) Dynamics of optical solitons and conservation laws of a new (2+ 1)-dimensional integrable nonlinear evolution equation in deep water oceanic waves. Mod Phys Lett B 34(05):2050068MathSciNet
Metadata
Title
Analysis of the nanoscale heat transport and Lorentz force based on the time-dependent Cross nanofluid
Authors
Assad Ayub
Zulqurnain sabir
Hafiz A. Wahab
Mohammed Balubaid
S. R. Mahmoud
Mohamed R. Ali
R. Sadat
Publication date
31-01-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 3/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01579-1

Other articles of this Issue 3/2023

Engineering with Computers 3/2023 Go to the issue