Skip to main content
Top
Published in: The Journal of Supercomputing 4/2024

21-09-2023

A novel grey wolf optimization algorithm based on geometric transformations for gene selection and cancer classification

Authors: Ali Dabba, Abdelkamel Tari, Samy Meftali

Published in: The Journal of Supercomputing | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cancer classification based on microarray data plays a very important role in cancer diagnosis and detection. Indeed, since microarray data contains a huge number of genes and a small number of samples, it is also nonlinear and noisy, which has led to the need to find a way to reduce the data dimensionality. In order to solve this problem, we need to find an effective way to help biologists and medical research scientists. This paper proposes a new bio-inspired algorithm for cancer classification in gene selection called Binary Grey Wolf Optimization Algorithm (BGWOA), which is based on hybridization between Minimum Redundancy-Maximum Relevance (MRMR) and a novel Binary Grey Wolf algorithm. The BGWOA is composed of two stages: The first stage consists of the MRMR pre-filter to obtain the set of relevant genes that reduces the dimensionality of the data sets. The second stage consists of a new Binary Grey Wolf algorithm based on direct similarity and centroid known in the geometric field to update the positions of grey wolves in order to exploit and explore the search spaces. As well, we used a fitness function that depends on the SVM with LOOCV classifier and the rate of unselected genes to evaluate the presented solutions. The primary goal of the last stage is to identify the best relevant subset of genes among those obtained in the first stage. This research used eight microarray datasets to evaluate and compare the proposed method with other existing algorithms. The experimental results produced in this research are able to provide a higher classification accuracy with fewer genes compared to many recently published algorithms. Specifically, the proposed method achieves 100% classification accuracy in five reference datasets with a number of genes ranging from 12 to 25. Therefore, this indicates that our research is promising and significant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdiansah A, Wardoyo R (2015) Time complexity analysis of support vector machines (svm) in libsvm. Int J Comput Aappl 128:28–34 Abdiansah A, Wardoyo R (2015) Time complexity analysis of support vector machines (svm) in libsvm. Int J Comput Aappl 128:28–34
2.
go back to reference Al-Betar MA, Alomari OA, Abu-Romman SM (2020) A triz-inspired bat algorithm for gene selection in cancer classification. Genomics 112:114–126PubMedCrossRef Al-Betar MA, Alomari OA, Abu-Romman SM (2020) A triz-inspired bat algorithm for gene selection in cancer classification. Genomics 112:114–126PubMedCrossRef
3.
go back to reference Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750PubMedPubMedCentralCrossRefADS Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750PubMedPubMedCentralCrossRefADS
4.
go back to reference Alshamlan HM, Badr GH, Alohali YA (2015) Genetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classification. Comput Biol Chem 56:49–60PubMedCrossRef Alshamlan HM, Badr GH, Alohali YA (2015) Genetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classification. Comput Biol Chem 56:49–60PubMedCrossRef
5.
go back to reference Aydadenta H, Adiwijaya A (2018) A clustering approach for feature selection in microarray data classification using random forest. J Inform Process Syst 14:1167–1175 Aydadenta H, Adiwijaya A (2018) A clustering approach for feature selection in microarray data classification using random forest. J Inform Process Syst 14:1167–1175
6.
go back to reference Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M et al (2001) Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci 98:13790–13795PubMedPubMedCentralCrossRefADS Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M et al (2001) Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci 98:13790–13795PubMedPubMedCentralCrossRefADS
7.
go back to reference Blanco R, Larrañaga P, Inza I, Sierra B (2004) Gene selection for cancer classification using wrapper approaches. Int J Pattern Recognit Artif Intell 18:1373–1390CrossRef Blanco R, Larrañaga P, Inza I, Sierra B (2004) Gene selection for cancer classification using wrapper approaches. Int J Pattern Recognit Artif Intell 18:1373–1390CrossRef
8.
go back to reference Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2015) Distributed feature selection: An application to microarray data classification. Appl Soft Comput 30:136–150CrossRef Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2015) Distributed feature selection: An application to microarray data classification. Appl Soft Comput 30:136–150CrossRef
9.
go back to reference Bolón-Canedo V, Sánchez-Marono N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111–135CrossRef Bolón-Canedo V, Sánchez-Marono N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111–135CrossRef
10.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Canc J Clin 68:394–424 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Canc J Clin 68:394–424
11.
go back to reference Chaudhuri A, Sahu TP (2021) A hybrid feature selection method based on binary jaya algorithm for micro-array data classification. Comput Electr Eng 90:106963CrossRef Chaudhuri A, Sahu TP (2021) A hybrid feature selection method based on binary jaya algorithm for micro-array data classification. Comput Electr Eng 90:106963CrossRef
12.
go back to reference Chen KH, Wang KJ, Tsai ML, Wang KM, Adrian AM, Cheng WC, Yang TS, Teng NC, Tan KP, Chang KS (2014) Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinform 15:1–10CrossRef Chen KH, Wang KJ, Tsai ML, Wang KM, Adrian AM, Cheng WC, Yang TS, Teng NC, Tan KP, Chang KS (2014) Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinform 15:1–10CrossRef
13.
go back to reference Chen Y, Zhang Z, Zheng J, Ma Y, Xue Y (2017) Gene selection for tumor classification using neighborhood rough sets and entropy measures. J Biomed Inform 67:59–68PubMedCrossRef Chen Y, Zhang Z, Zheng J, Ma Y, Xue Y (2017) Gene selection for tumor classification using neighborhood rough sets and entropy measures. J Biomed Inform 67:59–68PubMedCrossRef
14.
go back to reference Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32:29–38PubMedCrossRef Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32:29–38PubMedCrossRef
15.
17.
go back to reference Crawford JR, Howell DC (1998) Comparing an individual’s test score against norms derived from small samples. Clin Neuropsychol 12:482–486CrossRef Crawford JR, Howell DC (1998) Comparing an individual’s test score against norms derived from small samples. Clin Neuropsychol 12:482–486CrossRef
18.
go back to reference Dabba A, Tari A, Meftali S (2021) Hybridization of moth flame optimization algorithm and quantum computing for gene selection in microarray data. J Ambient Intell Humaniz Comput 12:2731–2750CrossRef Dabba A, Tari A, Meftali S (2021) Hybridization of moth flame optimization algorithm and quantum computing for gene selection in microarray data. J Ambient Intell Humaniz Comput 12:2731–2750CrossRef
19.
go back to reference Dabba A, Tari A, Meftali S, Mokhtari R (2021) Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst Appl 166:114012CrossRef Dabba A, Tari A, Meftali S, Mokhtari R (2021) Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst Appl 166:114012CrossRef
20.
go back to reference Dalton B (2019) Data mining: a preprocessing engine. Solid State Technol 62:09–16 Dalton B (2019) Data mining: a preprocessing engine. Solid State Technol 62:09–16
21.
go back to reference Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156CrossRef Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156CrossRef
22.
go back to reference Dashtban M, Balafar M, Suravajhala P (2018) Gene selection for tumor classification using a novel bio-inspired multi-objective approach. Genomics 110:10–17PubMedCrossRef Dashtban M, Balafar M, Suravajhala P (2018) Gene selection for tumor classification using a novel bio-inspired multi-objective approach. Genomics 110:10–17PubMedCrossRef
23.
go back to reference Davies S, Russell S (1994) Np-completeness of searches for smallest possible feature sets. In: AAAI Symposium on Intelligent Relevance. AAAI Press. pp 37–39 Davies S, Russell S (1994) Np-completeness of searches for smallest possible feature sets. In: AAAI Symposium on Intelligent Relevance. AAAI Press. pp 37–39
24.
go back to reference Deng L, Pei J, Ma J, Lee DL (2004) A rank sum test method for informative gene discovery. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp«410–419 Deng L, Pei J, Ma J, Lee DL (2004) A rank sum test method for informative gene discovery. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp«410–419
25.
go back to reference Deng X, Li M, Deng S, Wang L (2021) Hybrid gene selection approach using xgboost and multi-objective genetic algorithm for cancer classification. arXiv preprint arXiv:2106.05841 Deng X, Li M, Deng S, Wang L (2021) Hybrid gene selection approach using xgboost and multi-objective genetic algorithm for cancer classification. arXiv preprint arXiv:​2106.​05841
26.
go back to reference Deng X, Li Y, Weng J, Zhang J (2019) Feature selection for text classification: a review. Multim Tools Appl 78:3797–3816CrossRef Deng X, Li Y, Weng J, Zhang J (2019) Feature selection for text classification: a review. Multim Tools Appl 78:3797–3816CrossRef
27.
go back to reference Dif N, Elberrichi Z (2019) An enhanced recursive firefly algorithm for informative gene selection. Int J Swarm Intell Res (IJSIR) 10:21–33CrossRef Dif N, Elberrichi Z (2019) An enhanced recursive firefly algorithm for informative gene selection. Int J Swarm Intell Res (IJSIR) 10:21–33CrossRef
28.
go back to reference Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205PubMedCrossRef Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205PubMedCrossRef
29.
go back to reference Du D, Li K, Li X, Fei M (2014) A novel forward gene selection algorithm for microarray data. Neurocomputing 133:446–458CrossRef Du D, Li K, Li X, Fei M (2014) A novel forward gene selection algorithm for microarray data. Neurocomputing 133:446–458CrossRef
30.
go back to reference Duval B, Hao JK, Hernandez Hernandez JC (2009) A memetic algorithm for gene selection and molecular classification of cancer, In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 201–208 Duval B, Hao JK, Hernandez Hernandez JC (2009) A memetic algorithm for gene selection and molecular classification of cancer, In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 201–208
31.
go back to reference Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M AZ, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67CrossRef Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M AZ, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67CrossRef
32.
go back to reference Fernández-Navarro F, Hervás-Martínez C, Ruiz R, Riquelme JC (2012) Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection. Appl Soft Comput 12:1787–1800CrossRef Fernández-Navarro F, Hervás-Martínez C, Ruiz R, Riquelme JC (2012) Evolutionary generalized radial basis function neural networks for improving prediction accuracy in gene classification using feature selection. Appl Soft Comput 12:1787–1800CrossRef
33.
go back to reference Fix E (1985) Discriminatory analysis: nonparametric discrimination, consistency properties. volume 1. USAF School of Aviation Medicine Fix E (1985) Discriminatory analysis: nonparametric discrimination, consistency properties. volume 1. USAF School of Aviation Medicine
34.
go back to reference Ghosh M, Guha R, Sarkar R, Abraham A (2019) A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput Appl 32:7839–7857CrossRef Ghosh M, Guha R, Sarkar R, Abraham A (2019) A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput Appl 32:7839–7857CrossRef
35.
go back to reference Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedCrossRef Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedCrossRef
36.
go back to reference Hall MA (1999) Correlation-based feature selection for machine learning Hall MA (1999) Correlation-based feature selection for machine learning
37.
go back to reference Hameed SS, Muhammad FF, Hassan R, Saeed F (2018) Gene selection and classification in microarray datasets using a hybrid approach of pcc-bpso/ga with multi classifiers. JCS 14:868–880 Hameed SS, Muhammad FF, Hassan R, Saeed F (2018) Gene selection and classification in microarray datasets using a hybrid approach of pcc-bpso/ga with multi classifiers. JCS 14:868–880
38.
go back to reference Hegazy AE, Makhlouf M, El-Tawel GS (2018) Feature selection using chaotic salp swarm algorithm for data classification. Arab J Sci Eng 44:3801–3816CrossRef Hegazy AE, Makhlouf M, El-Tawel GS (2018) Feature selection using chaotic salp swarm algorithm for data classification. Arab J Sci Eng 44:3801–3816CrossRef
39.
go back to reference Hengpraprohm S, Mukviboonchai S, Thammasang R, Chongstitvatana P (2010) A ga-based classifier for microarray data classification. In: 2010 International Conference on Intelligent Computing and Cognitive Informatics. IEEE, pp 199–202 Hengpraprohm S, Mukviboonchai S, Thammasang R, Chongstitvatana P (2010) A ga-based classifier for microarray data classification. In: 2010 International Conference on Intelligent Computing and Cognitive Informatics. IEEE, pp 199–202
40.
go back to reference Huerta EB, Duval B, Hao JK (2010) A hybrid lda and genetic algorithm for gene selection and classification of microarray data. Neurocomputing 73:2375–2383CrossRef Huerta EB, Duval B, Hao JK (2010) A hybrid lda and genetic algorithm for gene selection and classification of microarray data. Neurocomputing 73:2375–2383CrossRef
41.
go back to reference Ibrahim AO, Shamsuddin SM, Abraham A, Qasem SN (2019) Adaptive memetic method of multi-objective genetic evolutionary algorithm for backpropagation neural network. Neural Comput Appl 31:4945–4962CrossRef Ibrahim AO, Shamsuddin SM, Abraham A, Qasem SN (2019) Adaptive memetic method of multi-objective genetic evolutionary algorithm for backpropagation neural network. Neural Comput Appl 31:4945–4962CrossRef
42.
go back to reference Inza I, Larranaga P, Blanco R, Cerrolaza AJ (2004) Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 31:91–103PubMedCrossRef Inza I, Larranaga P, Blanco R, Cerrolaza AJ (2004) Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 31:91–103PubMedCrossRef
43.
go back to reference Jagga Z, Gupta D (2015) Machine learning for biomarker identification in cancer research-developments toward its clinical application. Pers Med 12:371–387CrossRef Jagga Z, Gupta D (2015) Machine learning for biomarker identification in cancer research-developments toward its clinical application. Pers Med 12:371–387CrossRef
44.
go back to reference Kelemen A, Zhou H, Lawhead P, Liang Y (2003) Naive bayesian classifier for microarray data. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, pp 1769–1773 Kelemen A, Zhou H, Lawhead P, Liang Y (2003) Naive bayesian classifier for microarray data. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, pp 1769–1773
45.
go back to reference Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference. IEEE, pp 372–378 Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference. IEEE, pp 372–378
46.
go back to reference Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673PubMedPubMedCentralCrossRef Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673PubMedPubMedCentralCrossRef
47.
go back to reference Kira K, Rendell LA (1992) A practical approach to feature selection. Machine learning proceedings. Elsevier, Amsterdam, pp 249–256 Kira K, Rendell LA (1992) A practical approach to feature selection. Machine learning proceedings. Elsevier, Amsterdam, pp 249–256
48.
go back to reference Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European Conference on Machine Learning. Springer, pp 171–182 Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European Conference on Machine Learning. Springer, pp 171–182
50.
go back to reference Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, de Schaetzen V, Duque R, Bersini H, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinf 9:1106–1119CrossRef Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, de Schaetzen V, Duque R, Bersini H, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinf 9:1106–1119CrossRef
51.
go back to reference Li S, Wu X, Tan M (2008) Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput 12:1039–1048CrossRef Li S, Wu X, Tan M (2008) Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput 12:1039–1048CrossRef
52.
go back to reference Ma S, Li X, Wang Y (2016) Classification of gene expression data using multiobjective differential evolution. Energies 9:1061CrossRef Ma S, Li X, Wang Y (2016) Classification of gene expression data using multiobjective differential evolution. Energies 9:1061CrossRef
53.
go back to reference Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl-Based Syst 161:185–204CrossRef Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl-Based Syst 161:185–204CrossRef
54.
go back to reference Masoudi-Sobhanzadeh Y, Motieghader H (2016) World competitive contests (wcc) algorithm: a novel intelligent optimization algorithm for biological and non-biological problems. Inform Med Unlock 3:15–28CrossRef Masoudi-Sobhanzadeh Y, Motieghader H (2016) World competitive contests (wcc) algorithm: a novel intelligent optimization algorithm for biological and non-biological problems. Inform Med Unlock 3:15–28CrossRef
55.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
56.
go back to reference Molina LC, Belanche L, Nebot À (2002) Feature selection algorithms: a survey and experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings, IEEE, pp 306–313 Molina LC, Belanche L, Nebot À (2002) Feature selection algorithms: a survey and experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings, IEEE, pp 306–313
58.
go back to reference Motieghader H, Najafi A, Sadeghi B, Masoudi-Nejad A (2017) A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. Inform Med Unlock 9:246–254CrossRef Motieghader H, Najafi A, Sadeghi B, Masoudi-Nejad A (2017) A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. Inform Med Unlock 9:246–254CrossRef
59.
go back to reference Mundra PA, Rajapakse JC (2010) Gene and sample selection for cancer classification with support vectors based t-statistic. Neurocomputing 73:2353–2362CrossRef Mundra PA, Rajapakse JC (2010) Gene and sample selection for cancer classification with support vectors based t-statistic. Neurocomputing 73:2353–2362CrossRef
60.
go back to reference Nancy SG, Saranya K, Rajasekar S (2020) Neuro-fuzzy ant bee colony based feature selection for cancer classification. In: EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing. Springer. pp 31–40 Nancy SG, Saranya K, Rajasekar S (2020) Neuro-fuzzy ant bee colony based feature selection for cancer classification. In: EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing. Springer. pp 31–40
61.
go back to reference Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Comput Archit Lett 26:917–922 Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Comput Archit Lett 26:917–922
62.
go back to reference Oreski S, Oreski G (2014) Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst Appl 41:2052–2064CrossRef Oreski S, Oreski G (2014) Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst Appl 41:2052–2064CrossRef
63.
go back to reference Othman MS, Kumaran SR, Yusuf LM (2020) Gene selection using hybrid multi-objective cuckoo search algorithm with evolutionary operators for cancer microarray data. IEEE Access 8:186348–186361CrossRef Othman MS, Kumaran SR, Yusuf LM (2020) Gene selection using hybrid multi-objective cuckoo search algorithm with evolutionary operators for cancer microarray data. IEEE Access 8:186348–186361CrossRef
64.
go back to reference Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Patt Anal Mach Intell 27(8):1226–1238CrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Patt Anal Mach Intell 27(8):1226–1238CrossRef
65.
go back to reference Petricoin EF III, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. The lancet 359:572–577CrossRef Petricoin EF III, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. The lancet 359:572–577CrossRef
66.
go back to reference Prasad Y, Biswas K, Hanmandlu M (2018) A recursive PSO scheme for gene selection in microarray data. Appl Soft Comput 71:213–225CrossRef Prasad Y, Biswas K, Hanmandlu M (2018) A recursive PSO scheme for gene selection in microarray data. Appl Soft Comput 71:213–225CrossRef
67.
go back to reference Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform 18:1–14CrossRef Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform 18:1–14CrossRef
68.
go back to reference Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517PubMedCrossRef Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517PubMedCrossRef
69.
go back to reference Sampathkumar A, Rastogi R, Arukonda S, Shankar A, Kautish S, Sivaram M (2020) An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. J Ambient Intell Humaniz Comput 11:4743–4751CrossRef Sampathkumar A, Rastogi R, Arukonda S, Shankar A, Kautish S, Sivaram M (2020) An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. J Ambient Intell Humaniz Comput 11:4743–4751CrossRef
70.
go back to reference Sharma A, Rani R (2019) C-hmoshssa: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods. Comput Meth Progr Biomed 178:219–235CrossRef Sharma A, Rani R (2019) C-hmoshssa: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods. Comput Meth Progr Biomed 178:219–235CrossRef
71.
go back to reference Shukla AK, Singh P, Vardhan M (2020) Gene selection for cancer types classification using novel hybrid metaheuristics approach. Swarm Evol Comput 54:100661CrossRef Shukla AK, Singh P, Vardhan M (2020) Gene selection for cancer types classification using novel hybrid metaheuristics approach. Swarm Evol Comput 54:100661CrossRef
72.
go back to reference Su CT, Hsu JH (2005) An extended chi2 algorithm for discretization of real value attributes. IEEE Trans Knowl Data Eng 17:437–441CrossRef Su CT, Hsu JH (2005) An extended chi2 algorithm for discretization of real value attributes. IEEE Trans Knowl Data Eng 17:437–441CrossRef
73.
go back to reference Tadist K, Mrabti F, Nikolov NS, Zahi A, Najah S (2021) Sdpso: spark distributed pso-based approach for feature selection and cancer disease prognosis. J Big Data 8:1–22CrossRef Tadist K, Mrabti F, Nikolov NS, Zahi A, Najah S (2021) Sdpso: spark distributed pso-based approach for feature selection and cancer disease prognosis. J Big Data 8:1–22CrossRef
74.
go back to reference Tang B, Xiang K, Pang M (2020) An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution. Neural Comput Appl 32:4849–4883CrossRef Tang B, Xiang K, Pang M (2020) An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution. Neural Comput Appl 32:4849–4883CrossRef
75.
go back to reference Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data classification: algorithms and applications, p 37 Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data classification: algorithms and applications, p 37
76.
go back to reference Tsai YS, Aguan K, Pal NR, Chung IF (2011) Identification of single-and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS ONE 6:e24259PubMedPubMedCentralCrossRefADS Tsai YS, Aguan K, Pal NR, Chung IF (2011) Identification of single-and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS ONE 6:e24259PubMedPubMedCentralCrossRefADS
77.
go back to reference Tsang IW, Kwok JT, Cheung PM, Cristianini N (2005) Core vector machines: fast svm training on very large data sets. J Mach Learn Res 6:363–392MathSciNet Tsang IW, Kwok JT, Cheung PM, Cristianini N (2005) Core vector machines: fast svm training on very large data sets. J Mach Learn Res 6:363–392MathSciNet
78.
go back to reference Wang H, Niu B (2017) A novel bacterial algorithm with randomness control for feature selection in classification. Neurocomputing 228:176–186CrossRef Wang H, Niu B (2017) A novel bacterial algorithm with randomness control for feature selection in classification. Neurocomputing 228:176–186CrossRef
79.
go back to reference Zhu Z, Ong YS, Dash M (2007) Markov blanket-embedded genetic algorithm for gene selection. Patt Recogn 40:3236–3248CrossRefADS Zhu Z, Ong YS, Dash M (2007) Markov blanket-embedded genetic algorithm for gene selection. Patt Recogn 40:3236–3248CrossRefADS
Metadata
Title
A novel grey wolf optimization algorithm based on geometric transformations for gene selection and cancer classification
Authors
Ali Dabba
Abdelkamel Tari
Samy Meftali
Publication date
21-09-2023
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 4/2024
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-023-05643-z

Other articles of this Issue 4/2024

The Journal of Supercomputing 4/2024 Go to the issue

Premium Partner