Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-10-2019 | Issue 3/2020

Fire Technology 3/2020

A Parametric Study of Spontaneous Ignition in Large Coal Stockpiles

Journal:
Fire Technology > Issue 3/2020
Authors:
S. Muthu Kumaran, Vasudevan Raghavan, Ali. S. Rangwala
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Self-heating of coal during its storage and transportation has been a serious problem for decades. Coal stored in large piles for long duration is subjected to weathering by atmospheric air that prevails with different temperatures and moisture content. Chemisorption of atmospheric oxygen results in low-temperature oxidation of pile, which generates heat due to exothermic reactions. If the local heat release rate is higher as compared to the heat dissipated, a significant increase in temperature is possible and this results in spontaneous ignition of the pile. The presence of moisture in coal delays the occurrence of self-heating. This motivates to analyze a scenario of using moist coal to delay or even prevent the self-ignition in dry coal until a given time period of its storage. The main objective of this work is to investigate the critical conditions, which may lead to spontaneous ignition in large coal stockpiles containing dry and moist coal layers. A one-dimensional numerical model is used for this purpose. A parametric study is carried out considering different porosity, superficial air velocity and reactivity values. The time period of coal pile storage is fixed as 360 days. The location and time taken for self-ignition in the pile within this period is reported for each case. In summary, considering several cases, the simulations systematically reveal that highly reactive coal with high pile porosity and higher superficial gas velocity takes the least time to reach the self-ignition temperature.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2020

Fire Technology 3/2020 Go to the issue