Skip to main content
Top
Published in: Strength of Materials 2/2013

01-03-2013 | SCIENTIFIC AND TECHNICAL SECTION

A Physical-Mechanical Model of Ductile Fracture in Irradiated Austenitic Steels

Authors: B. Z. Margolin, A. A. Sorokin

Published in: Strength of Materials | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the equations that describe nucleation and growth of voids in austenitic steels during deformation under various stress-state triaxiality ratios. The authors put forward a criterion of fracture due to void merging through the plastic instability mechanism in a void-containing material or through the channel mechanism, i.e., shearing of bridges between voids. The equations include two void populations – the deformation-caused voids and the vacancy voids that arise during irradiation and result in the irradiation-induced swelling. The authors perform modeling of the influence of various factors (test temperature, neutron irradiation dose, stress-state triaxiality, irradiation-induced swelling) on plasticity and fracture toughness of material. The calculated results are compared to experimental findings. The influence of the stress-state triaxiality on plasticity of an irradiated material has been clarified. A relation has been found between the strain hardening parameters and plasticity, fracture toughness of material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. P. Kursevich, B. Z. Margolin, O. Yu. Prokoshev, and V. I. Kokhonov, “Mechanical properties of austenitic steels under neutron irradiation: the influence of various factors,” Vopr. Materialoved., No. 4 (48), 55–68 (2006). I. P. Kursevich, B. Z. Margolin, O. Yu. Prokoshev, and V. I. Kokhonov, “Mechanical properties of austenitic steels under neutron irradiation: the influence of various factors,” Vopr. Materialoved., No. 4 (48), 55–68 (2006).
2.
go back to reference A. A. Sorokin, B. Z. Margolin, and I. P. Kursevich, “The influence of neutron irradiation on mechanical properties of materials of WWER type reactor internals,” Vopr. Materialoved., No. 2 (66), 131–152 (2011). A. A. Sorokin, B. Z. Margolin, and I. P. Kursevich, “The influence of neutron irradiation on mechanical properties of materials of WWER type reactor internals,” Vopr. Materialoved., No. 2 (66), 131–152 (2011).
3.
go back to reference V. I. Smirnov, B. Z. Margolin, A. N. Lapin, et al., “A study of the influence of neutron irradiation on fracture toughness of 08Kh18N10T steel and its weld metal,” Vopr. Materialoved., No. 1 (65), 167–183 (2011). V. I. Smirnov, B. Z. Margolin, A. N. Lapin, et al., “A study of the influence of neutron irradiation on fracture toughness of 08Kh18N10T steel and its weld metal,” Vopr. Materialoved., No. 1 (65), 167–183 (2011).
4.
go back to reference B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part I. Experimental results,” Vopr. Materialoved., No. 2 (58), 89–98 (2009). B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part I. Experimental results,” Vopr. Materialoved., No. 2 (58), 89–98 (2009).
5.
go back to reference B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part II. Physical and mechanical mechanisms of embrittlement,” Vopr. Materialoved., No. 2 (58), 99–111 (2009). B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part II. Physical and mechanical mechanisms of embrittlement,” Vopr. Materialoved., No. 2 (58), 99–111 (2009).
6.
go back to reference R. M. McMeeking, “Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture initiation,” J. Mech. Phys. Solids, 25, 357–381 (1977).CrossRef R. M. McMeeking, “Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture initiation,” J. Mech. Phys. Solids, 25, 357–381 (1977).CrossRef
7.
go back to reference B. Z. Margolin, V. I. Kostylev, A. V. Ilyin, and A. I. Minkin, “Simulation of JR-curves for reactor pressure vessels steels on the basis of a ductile fracture model,” Int. J. Press. Vess. Piping, 78, 715–725 (2001).CrossRef B. Z. Margolin, V. I. Kostylev, A. V. Ilyin, and A. I. Minkin, “Simulation of JR-curves for reactor pressure vessels steels on the basis of a ductile fracture model,” Int. J. Press. Vess. Piping, 78, 715–725 (2001).CrossRef
8.
go back to reference D. François, “ESIS TC7D-1-96D. Guidelines for terminology and nomenclature in the field of structural integrity,” Fatigue Fract. Eng. Mater. Struct., 19, No. 12, 1515–1533 (1996).CrossRef D. François, “ESIS TC7D-1-96D. Guidelines for terminology and nomenclature in the field of structural integrity,” Fatigue Fract. Eng. Mater. Struct., 19, No. 12, 1515–1533 (1996).CrossRef
9.
go back to reference B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modeling for transcrystalline and intercrystalline fracture by void nucleation and growth,” Fatigue Fract. Eng. Mater. Struct., 21, 123–137 (1998).CrossRef B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modeling for transcrystalline and intercrystalline fracture by void nucleation and growth,” Fatigue Fract. Eng. Mater. Struct., 21, 123–137 (1998).CrossRef
10.
go back to reference B. Z. Margolin, V. I. Kostylev, A. I. Minkin, and A. V. Il’in, “Modeling of ductile crack growth in reactor pressure-vessel steels and determination of JR curves,” Strength Mater., 34, No. 2, 120–130 (2002).CrossRef B. Z. Margolin, V. I. Kostylev, A. I. Minkin, and A. V. Il’in, “Modeling of ductile crack growth in reactor pressure-vessel steels and determination of JR curves,” Strength Mater., 34, No. 2, 120–130 (2002).CrossRef
11.
go back to reference N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975). N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).
12.
go back to reference Y. Huang, “Accurate dilatation rates for spherical voids in triaxial stress fields,” Trans. ASME, Ser. E, J. Appl. Mech., 58, 1084–1086 (1991).CrossRef Y. Huang, “Accurate dilatation rates for spherical voids in triaxial stress fields,” Trans. ASME, Ser. E, J. Appl. Mech., 58, 1084–1086 (1991).CrossRef
13.
go back to reference F. M. Beremin, “Cavity formation from inclusions in ductile fracture of A508 steel,” Met. Trans., 12A, 723–731 (1981). F. M. Beremin, “Cavity formation from inclusions in ductile fracture of A508 steel,” Met. Trans., 12A, 723–731 (1981).
14.
go back to reference B. Z. Margolin and V. A. Shvetsova, “Brittle fracture criterion: structural mechanics approach,” Strength Mater., 24, No. 2, 115–131 (1992). B. Z. Margolin and V. A. Shvetsova, “Brittle fracture criterion: structural mechanics approach,” Strength Mater., 24, No. 2, 115–131 (1992).
15.
go back to reference B. Z. Margolin, V. A. Shvetsova, and G. P. Karzov, “Brittle fracture of nuclear pressure vessel steels. Pt. I. Local criterion for cleavage fracture,” Int. J. Press. Vess. Piping, 72, 73–87 (1997).CrossRef B. Z. Margolin, V. A. Shvetsova, and G. P. Karzov, “Brittle fracture of nuclear pressure vessel steels. Pt. I. Local criterion for cleavage fracture,” Int. J. Press. Vess. Piping, 72, 73–87 (1997).CrossRef
16.
go back to reference B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction based for nuclear pressure vessel steels,” Int. J. Press. Vess. Piping, 75, 843–855 (1998).CrossRef B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction based for nuclear pressure vessel steels,” Int. J. Press. Vess. Piping, 75, 843–855 (1998).CrossRef
17.
go back to reference B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Application of a new cleavage fracture criterion for fracture toughness prediction for RPV steels,” Fatigue Fract. Eng. Mater. Struct., 29, No. 9, 697–713 (2006). B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Application of a new cleavage fracture criterion for fracture toughness prediction for RPV steels,” Fatigue Fract. Eng. Mater. Struct., 29, No. 9, 697–713 (2006).
18.
go back to reference B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Prometey local approach to brittle fracture: development and application,” Eng. Fract. Mech., 75, 3483–3498 (2008).CrossRef B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Prometey local approach to brittle fracture: development and application,” Eng. Fract. Mech., 75, 3483–3498 (2008).CrossRef
19.
go back to reference B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and E. V. Nesterova, “Brittle fracture local criterion and radiation embrittlement of reactor pressure vessel steels,” Strength Mater., 42, No. 5, 506–527 (2010).CrossRef B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and E. V. Nesterova, “Brittle fracture local criterion and radiation embrittlement of reactor pressure vessel steels,” Strength Mater., 42, No. 5, 506–527 (2010).CrossRef
20.
go back to reference B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Development of Prometey local approach and analysis of physical and mechanical aspects of brittle fracture of RPV steels,” Int. J. Press. Vess. Piping, 84, 320–336 (2007).CrossRef B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Development of Prometey local approach and analysis of physical and mechanical aspects of brittle fracture of RPV steels,” Int. J. Press. Vess. Piping, 84, 320–336 (2007).CrossRef
21.
go back to reference Effect of Irradiation on Water Reactors Internals, CEA, TECNATOM, VTT, AMES Report No. 11, Paris, June 1997. Effect of Irradiation on Water Reactors Internals, CEA, TECNATOM, VTT, AMES Report No. 11, Paris, June 1997.
22.
go back to reference T. S. Byun, N. Hashimoto, and K. Farrell, “Deformation mode map of irradiated 316 stainless steel in true stress–dose space,” J. Nucl. Mater., 351, 303–315 (2006).CrossRef T. S. Byun, N. Hashimoto, and K. Farrell, “Deformation mode map of irradiated 316 stainless steel in true stress–dose space,” J. Nucl. Mater., 351, 303–315 (2006).CrossRef
23.
go back to reference C. W. Hunter, R. L. Fish, and J. J. Holmes, “Channel fracture in irradiated EBR-II type 304 stainless steel,” Trans. Amer. Nucl. Soc., 15, No. 1, 254–255 (1972). C. W. Hunter, R. L. Fish, and J. J. Holmes, “Channel fracture in irradiated EBR-II type 304 stainless steel,” Trans. Amer. Nucl. Soc., 15, No. 1, 254–255 (1972).
24.
go back to reference V. N. Voevodin and I. M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (2006). V. N. Voevodin and I. M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (2006).
25.
go back to reference N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Irradiation swelling of austenitic stainless steels. The Influence of various factors. Processing of experimental data and formulation of constitutive equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006). N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Irradiation swelling of austenitic stainless steels. The Influence of various factors. Processing of experimental data and formulation of constitutive equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006).
26.
go back to reference E. A. Little, “Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel,” J. Nucl. Mater., 139, 261–276 (1986).CrossRef E. A. Little, “Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel,” J. Nucl. Mater., 139, 261–276 (1986).CrossRef
27.
go back to reference F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA (1966). F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA (1966).
28.
go back to reference V. I. Vladimirov, Physical Nature of Fracture in Materials [in Russian], Metallurgia, Moscow (1984). V. I. Vladimirov, Physical Nature of Fracture in Materials [in Russian], Metallurgia, Moscow (1984).
29.
go back to reference P. W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, New York (1952). P. W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, New York (1952).
30.
go back to reference H. Liebowitz (Ed.), Fracture, Vol. 3: Engineering Fundamentals and Environmental Effects, Academic Press, New York–London (1971). H. Liebowitz (Ed.), Fracture, Vol. 3: Engineering Fundamentals and Environmental Effects, Academic Press, New York–London (1971).
31.
go back to reference B. Z. Margolin, A. I. Minkin, V. I. Smirnov, and V. I. Fomenko, “Prediction of static fracture toughness for austenitic materials under neutron irradiation conditions,” Vopr. Materialoved., No. 1 (53), 123–138 (2008). B. Z. Margolin, A. I. Minkin, V. I. Smirnov, and V. I. Fomenko, “Prediction of static fracture toughness for austenitic materials under neutron irradiation conditions,” Vopr. Materialoved., No. 1 (53), 123–138 (2008).
32.
go back to reference G. R. Odette and G. E. Lucas, “The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels,” J. Nucl. Mater., 179–181, 572–576 (1991).CrossRef G. R. Odette and G. E. Lucas, “The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels,” J. Nucl. Mater., 179181, 572–576 (1991).CrossRef
33.
go back to reference G. E. Lucas, “Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures,” J. Nucl. Mater., 233–237, 207–212 (1996).CrossRef G. E. Lucas, “Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures,” J. Nucl. Mater., 233237, 207–212 (1996).CrossRef
Metadata
Title
A Physical-Mechanical Model of Ductile Fracture in Irradiated Austenitic Steels
Authors
B. Z. Margolin
A. A. Sorokin
Publication date
01-03-2013
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2013
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9440-7

Other articles of this Issue 2/2013

Strength of Materials 2/2013 Go to the issue

Premium Partners