Skip to main content
Top
Published in: Strength of Materials 2/2013

01-03-2013

Friction and Wear of Aluminum Alloy Reinforced by TiO2 Particles

Author: Z. Sarajan

Published in: Strength of Materials | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This composite has been developed by addition of 0.5 to 3.5 wt.% powders of TiO2 to aluminum melt by semisolid-metal processing of aluminum alloy. Dry sliding wear behavior of pins of cast composite, fabricated by solidification of melt-particle slurry in mold, has been determined by pin-on-disk wear tests carried out conventionally and while removing wear debris by camel brush. The accumulated volume loss in composites increases linearly with increasing sliding distance and the wear rate increases more or less linearly with increasing load. Increasing particle content decreases wear rate at a given load. The accumulated volume loss is considerably higher when wear debris is removed by camel brush during dry sliding wear. The relatively brighter compacted oxide transfer layer could be observed in the SEM micrograph of worn pin surfaces of the composites developed by addition of TiO2. At higher loads, the oxide debris are expected to get better compacted to form transfer layer, spread over a larger area of the sliding surface and thus, their removal causes a larger wear compared to that without removal of wear debris.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Previtali, D. Pocci, and C. Taccardo C, “Application of traditional investment casting process to aluminium matrix composites,” Composites: Part A, 39, 1606–1617 (2008).CrossRef B. Previtali, D. Pocci, and C. Taccardo C, “Application of traditional investment casting process to aluminium matrix composites,” Composites: Part A, 39, 1606–1617 (2008).CrossRef
2.
go back to reference L. Ma. Flores-Vélez, J. Chávez, L. Hernández, and O. Dominguez, “Characterization and properties of aluminum composite materials prepared by powder metallurgy techniques using ceramic solid wastes,” Mater. Manufact. Processes, 16, 1–16 (2001).CrossRef L. Ma. Flores-Vélez, J. Chávez, L. Hernández, and O. Dominguez, “Characterization and properties of aluminum composite materials prepared by powder metallurgy techniques using ceramic solid wastes,” Mater. Manufact. Processes, 16, 1–16 (2001).CrossRef
3.
go back to reference H. Wang, “In-situ Si/Al composite produced by semisolid metal processing,” Mater. Manufact. Processes, 22, 696–699 (2007).CrossRef H. Wang, “In-situ Si/Al composite produced by semisolid metal processing,” Mater. Manufact. Processes, 22, 696–699 (2007).CrossRef
4.
go back to reference Ch. W. Wong, M. Gupta, and Lu Li, “Effect of matrix constitution on microstructure and mechanical properties of rheocast metal matrix composites,” Mater. Manufact. Processes, 13, 27–52 (1998).CrossRef Ch. W. Wong, M. Gupta, and Lu Li, “Effect of matrix constitution on microstructure and mechanical properties of rheocast metal matrix composites,” Mater. Manufact. Processes, 13, 27–52 (1998).CrossRef
5.
go back to reference M. M. Verdian, “Synthesis of TiAl3–Al2O3 composite particles by chemical reactions in molten salts,” Mater. Manufact. Processes, 25, 953–955 (2010).CrossRef M. M. Verdian, “Synthesis of TiAl3–Al2O3 composite particles by chemical reactions in molten salts,” Mater. Manufact. Processes, 25, 953–955 (2010).CrossRef
6.
go back to reference J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal matrix composites: production by the stir casting method,” J. Mater. Process. Technol., 92-93, 1–7 (1999).CrossRef J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal matrix composites: production by the stir casting method,” J. Mater. Process. Technol., 92-93, 1–7 (1999).CrossRef
7.
go back to reference G. Lin, X. U. Hong-yu, Y. U. Kuai, and W. Hong-lin, “Aging behavior of A12O3 short fiber reinforced A1–Cu alloy composites,” Trans. Nonferrous Met. Soc. China, 17, 1018–1021 (2007).CrossRef G. Lin, X. U. Hong-yu, Y. U. Kuai, and W. Hong-lin, “Aging behavior of A12O3 short fiber reinforced A1–Cu alloy composites,” Trans. Nonferrous Met. Soc. China, 17, 1018–1021 (2007).CrossRef
8.
go back to reference K. C. Chan and S. H. Chan, “Effect of cell morphology and heat treatment on compressive properties of aluminum foams,” Mater. Manufact. Processes, 19, 407–422 (2004).CrossRef K. C. Chan and S. H. Chan, “Effect of cell morphology and heat treatment on compressive properties of aluminum foams,” Mater. Manufact. Processes, 19, 407–422 (2004).CrossRef
9.
go back to reference C. S. Ramesh, A. R. Anwar Khan, N. Ravikumar, and P. Savanprabhu, “Prediction of wear coefficient of Al6061–TiO2 composites,” Wear, 259, 602–608 (2005).CrossRef C. S. Ramesh, A. R. Anwar Khan, N. Ravikumar, and P. Savanprabhu, “Prediction of wear coefficient of Al6061–TiO2 composites,” Wear, 259, 602–608 (2005).CrossRef
10.
go back to reference A. Dey, P. Dey, S. Datta, and A. K. Mukhopadhyay, “A new model for multilayer ceramic composites,” Mater. Manufact. Processes, 23, 513–527 (2008).CrossRef A. Dey, P. Dey, S. Datta, and A. K. Mukhopadhyay, “A new model for multilayer ceramic composites,” Mater. Manufact. Processes, 23, 513–527 (2008).CrossRef
11.
go back to reference K. M. Shorowordi, A. S. M. A Haseeb, and J. P. Celis, “Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,” Wear, 256, 1176–1181 (2004).CrossRef K. M. Shorowordi, A. S. M. A Haseeb, and J. P. Celis, “Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,” Wear, 256, 1176–1181 (2004).CrossRef
12.
go back to reference S. K. Chaudhury and S. C. Panigrahi, “Influence of TiO2 particles on recrystallization kinetics of Al–2Mg–TiO2 composites,” J. Mater. Process. Technol., 182, 540–548 (2007).CrossRef S. K. Chaudhury and S. C. Panigrahi, “Influence of TiO2 particles on recrystallization kinetics of Al–2Mg–TiO2 composites,” J. Mater. Process. Technol., 182, 540–548 (2007).CrossRef
13.
go back to reference L. Krishnamurthy, B. K. Sridhara, and D. Abdul Budan, “Comparative study on the machinability aspects of aluminium silicon carbide and aluminium graphite composites,” Mater. Manufact. Processes, 22, 903–908 (2007).CrossRef L. Krishnamurthy, B. K. Sridhara, and D. Abdul Budan, “Comparative study on the machinability aspects of aluminium silicon carbide and aluminium graphite composites,” Mater. Manufact. Processes, 22, 903–908 (2007).CrossRef
14.
go back to reference P. Poddar, V. C. Srivastava, P. K. De, and K. L. Sahoo, “Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process,” Mater. Sci. Eng. A, 460-461, 357–364 (2007). P. Poddar, V. C. Srivastava, P. K. De, and K. L. Sahoo, “Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process,” Mater. Sci. Eng. A, 460-461, 357–364 (2007).
15.
go back to reference Z. Min, W. Gaohui, D. Zuoyong, and J. Longtao, “TiB2P/Al composite fabricated by squeeze casting technology,” Mater. Sci. Eng. A, 374, 303–306 (2004).CrossRef Z. Min, W. Gaohui, D. Zuoyong, and J. Longtao, “TiB2P/Al composite fabricated by squeeze casting technology,” Mater. Sci. Eng. A, 374, 303–306 (2004).CrossRef
16.
go back to reference B. S. Ünlü, “Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method,” Mater. Design, 29, 2002–2008 (2008).CrossRef B. S. Ünlü, “Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method,” Mater. Design, 29, 2002–2008 (2008).CrossRef
17.
go back to reference Z. Humberto Melgarejo, O. Marcelo Suárez, and Kumar Sridharan, “Microstructure and properties of functionally graded Al–Mg–B composites fabricated by centrifugal casting,” Composites: Part A, 39, 1150–1158 (2008).CrossRef Z. Humberto Melgarejo, O. Marcelo Suárez, and Kumar Sridharan, “Microstructure and properties of functionally graded Al–Mg–B composites fabricated by centrifugal casting,” Composites: Part A, 39, 1150–1158 (2008).CrossRef
18.
go back to reference Z. Sarajan and M. Sedigh, “Influences of titanium hydride (TiH2) content and holding temperature in foamed pure aluminum,” Mater. Manufact. Processes, 24, 590–593 (2009).CrossRef Z. Sarajan and M. Sedigh, “Influences of titanium hydride (TiH2) content and holding temperature in foamed pure aluminum,” Mater. Manufact. Processes, 24, 590–593 (2009).CrossRef
19.
go back to reference F. C. Robles-Hernandez, M. B. Djurdjevic, W. T. Kierkus, and J. H. Sokolowski, “Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys,” Mater. Sci. Eng. A, 396, 271–276 (2005).CrossRef F. C. Robles-Hernandez, M. B. Djurdjevic, W. T. Kierkus, and J. H. Sokolowski, “Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys,” Mater. Sci. Eng. A, 396, 271–276 (2005).CrossRef
20.
go back to reference S.-N. Chou, J.-L. Huang, D. F. Lii., and H.-H. Lu, “The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting,” J. Alloys Comp., 436, 124–130 (2007).CrossRef S.-N. Chou, J.-L. Huang, D. F. Lii., and H.-H. Lu, “The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting,” J. Alloys Comp., 436, 124–130 (2007).CrossRef
21.
go back to reference A. W. Tesfay, S. K. Nath, and S. Ray, “Effect of transfer layer on dry sliding wear behavior of cast Al-based composites synthesized by addition of TiO2 and MoO3,” Wear, 266, 1082–1090 (2009).CrossRef A. W. Tesfay, S. K. Nath, and S. Ray, “Effect of transfer layer on dry sliding wear behavior of cast Al-based composites synthesized by addition of TiO2 and MoO3,” Wear, 266, 1082–1090 (2009).CrossRef
22.
go back to reference S. K. Chaudhury, C. S. Sivaramakrishnan, and S. C. Panigrahi, “A new spray forming technique for the preparation of aluminum rutile (TiO2) ex situ particle composite,” J. Mater. Process. Technol., 145, 385–390 (2004).CrossRef S. K. Chaudhury, C. S. Sivaramakrishnan, and S. C. Panigrahi, “A new spray forming technique for the preparation of aluminum rutile (TiO2) ex situ particle composite,” J. Mater. Process. Technol., 145, 385–390 (2004).CrossRef
23.
go back to reference I. C. Barlow, H. Jones, W. M. Rainforth, “Evolution of microstructure and hardening, and the role of Al3Ti coarsening, during extended thermal treatment in mechanically alloyed Al–Ti–O based materials,” Acta Mater., 49, 1209–1224 (2001).CrossRef I. C. Barlow, H. Jones, W. M. Rainforth, “Evolution of microstructure and hardening, and the role of Al3Ti coarsening, during extended thermal treatment in mechanically alloyed Al–Ti–O based materials,” Acta Mater., 49, 1209–1224 (2001).CrossRef
24.
go back to reference Z. Sarajan, “Nucleation effect of Ti–6Al–4V powder on Al–Si eutectic alloy,” Mater. Manufact. Processes, 24, 1354–1358 (2009).CrossRef Z. Sarajan, “Nucleation effect of Ti–6Al–4V powder on Al–Si eutectic alloy,” Mater. Manufact. Processes, 24, 1354–1358 (2009).CrossRef
25.
go back to reference G. S. Kataiah and D. P. Girish, “The mechanical properties and fractography of aluminium 6061–TiO2 composites,” Int. J. Pharm. Stud. Research, I, 17–25 (2010). G. S. Kataiah and D. P. Girish, “The mechanical properties and fractography of aluminium 6061–TiO2 composites,” Int. J. Pharm. Stud. Research, I, 17–25 (2010).
26.
go back to reference G. R. Li, Y. T. Zhao, H. M. Wang, et al., “Fabrication and properties of in situ (Al3Zr+Al2O3)p/A356 composites cast by permanent mould and squeeze casting,” J. Alloys Comp., 471, 530–535 (2009).CrossRef G. R. Li, Y. T. Zhao, H. M. Wang, et al., “Fabrication and properties of in situ (Al3Zr+Al2O3)p/A356 composites cast by permanent mould and squeeze casting,” J. Alloys Comp., 471, 530–535 (2009).CrossRef
27.
go back to reference R. K. Gautam, S. Ray, S. C. Jain, and S. C. Sharma, “Tribological behaviour of Cu–Cr–SiCp in situ composite,” Wear, 265, 902–912 (2008).CrossRef R. K. Gautam, S. Ray, S. C. Jain, and S. C. Sharma, “Tribological behaviour of Cu–Cr–SiCp in situ composite,” Wear, 265, 902–912 (2008).CrossRef
Metadata
Title
Friction and Wear of Aluminum Alloy Reinforced by TiO2 Particles
Author
Z. Sarajan
Publication date
01-03-2013
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2013
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9451-4

Other articles of this Issue 2/2013

Strength of Materials 2/2013 Go to the issue

Premium Partners