Skip to main content
Top
Published in: Strength of Materials 2/2013

01-03-2013

Model for Fatigue Life Prediction of Titanium Alloys. Part 2. Model Testing and Analysis of Obtained Results

Authors: O. M. Herasymchuk, O. V. Kononuchenko

Published in: Strength of Materials | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the results of fatigue life prediction for smooth specimens of VT3-1 titanium alloy in seven structural states using the proposed model. The prediction results presented in the form of fatigue curves (S–N curves) before crack initiation and fracture are compared with the experimental data and their good agreement is shown. For comparison, the life prediction results are presented using the fatigue fracture diagrams constructed experimentally during the crack growth process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks,” Strength Mater., 45, No. 1, 44–55 (2013).CrossRef O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks,” Strength Mater., 45, No. 1, 44–55 (2013).CrossRef
2.
go back to reference V. T. Troshchenko, B. A. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5–6, 245–251 (1995).CrossRef V. T. Troshchenko, B. A. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5–6, 245–251 (1995).CrossRef
3.
go back to reference O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef
4.
go back to reference G. Lütjering and J. C. Williams, Titanium, Springer, Berlin–New York (2003). G. Lütjering and J. C. Williams, Titanium, Springer, Berlin–New York (2003).
5.
go back to reference C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).CrossRef C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).CrossRef
6.
go back to reference O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef
7.
go back to reference G. Venkatramani, S. Ghosh, and M. Mills, “A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys,” Acta Mater., 55, 3971–3986 (2007).CrossRef G. Venkatramani, S. Ghosh, and M. Mills, “A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys,” Acta Mater., 55, 3971–3986 (2007).CrossRef
8.
go back to reference O. M. Herasymchuk, “Calculation of the critical reduced shear stress for polycrystalline titanium,” Visn. TNTU, No. 2 (66), 72–81 (2012). O. M. Herasymchuk, “Calculation of the critical reduced shear stress for polycrystalline titanium,” Visn. TNTU, No. 2 (66), 72–81 (2012).
9.
go back to reference R. K. Nalla, B. L. Boyce, J. P. Campbell, et al., “Influence of microstructure on high-cycle fatigue of Ti–6Al–4V: bimodal vs lamellar structures,” Met. Mater. Trans., 33A, 899–918 (2002). R. K. Nalla, B. L. Boyce, J. P. Campbell, et al., “Influence of microstructure on high-cycle fatigue of Ti–6Al–4V: bimodal vs lamellar structures,” Met. Mater. Trans., 33A, 899–918 (2002).
Metadata
Title
Model for Fatigue Life Prediction of Titanium Alloys. Part 2. Model Testing and Analysis of Obtained Results
Authors
O. M. Herasymchuk
O. V. Kononuchenko
Publication date
01-03-2013
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2013
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9443-4

Other articles of this Issue 2/2013

Strength of Materials 2/2013 Go to the issue

Premium Partners