Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2018

11-05-2018

A Piezoelectroluminescent Fiber-Optical Sensor for Diagnostics of the 3D Stress State in Composite Structures

Published in: Mechanics of Composite Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mathematical model of a piezoelectroluminescent fiber-optical sensor is developed for diagnostics of the 3D stress state of composite structures. The sensor model is a coaxial sector-compound layered cylinder consisting of a central optical fiber with electroluminescent and piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers are separated by radial-longitudinal boundaries, common for both layers, into geometrically equal six “measuring elements” — cylindrical two-layered sectors. The directions of 3D polarization of the piezoelectric phases and the frequencies of luminous efficacy of the electroluminescent phases are different in each sector. In the sensor, a thin translucent “internal” controlling electrode is located between the optical fiber and the electroluminescent layer, and the piezoelectric layer is coated by a thin “external” controlling electrode. The results of numerical modeling of the nonuniform coupled electroelastic fields of the piezoelectroluminescent fiber-optical sensor in the loaded “representative volume” of a composite, taking into account the action of the controlling voltage on the internal and external electrodes, of a numerical calculation of “informative and controlling coefficients” of the sensor, and of testing of an arbitrary 3D stress of state of a unidirectional glass-fiber plastic by the finite-element method are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Okosi, Fiber-Optical Sensors [in Russian], Energoatomizdat, Leningrad (1990). T. Okosi, Fiber-Optical Sensors [in Russian], Energoatomizdat, Leningrad (1990).
2.
go back to reference A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing — physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010). A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing — physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010).
3.
go back to reference R. Suresh, S. C. Tjin, and J. Hao, Fiber Bragg Grating, in Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin (2012), 413-439. R. Suresh, S. C. Tjin, and J. Hao, Fiber Bragg Grating, in Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin (2012), 413-439.
4.
go back to reference M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials and Structures, 12, No. 6, 914-924 (2003). M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials and Structures, 12, No. 6, 914-924 (2003).
5.
go back to reference Methods of Investigation of Materials Properties at Intense Dynamic Loadings [in Russian], ed. M. V. Zhernokletov, FGUP PFYats — VNIIEF, Sarov (2003). Methods of Investigation of Materials Properties at Intense Dynamic Loadings [in Russian], ed. M. V. Zhernokletov, FGUP PFYats — VNIIEF, Sarov (2003).
6.
go back to reference K. V. Tatmyshevskii, “Mechanoluminescent sensitive element: mathematical model and dynamic properties,” Pribori I Sistemy. Upravl., Kontrol I Diagnost., No. 4, 35-39 (2005). K. V. Tatmyshevskii, “Mechanoluminescent sensitive element: mathematical model and dynamic properties,” Pribori I Sistemy. Upravl., Kontrol I Diagnost., No. 4, 35-39 (2005).
7.
go back to reference Patent. RU (112262157 (13) C1. A piezoelectric gage. I. G. Tolstikov, A. P. Martynov, V. N. Fomchenko, A. I. Astaikin, and K. V. Trotsyuk. Opubl. 10.10.2005. Patent. RU (112262157 (13) C1. A piezoelectric gage. I. G. Tolstikov, A. P. Martynov, V. N. Fomchenko, A. I. Astaikin, and K. V. Trotsyuk. Opubl. 10.10.2005.
8.
go back to reference P. A. Urtyev, R. M. Ericson, B. Heis, and M. L. Parker, “Measuring of pressure and mass speed in solid bodies at dynamic loading,” Fiz. Goreniya i Vzryva, No. 5, 113-126 (1986). P. A. Urtyev, R. M. Ericson, B. Heis, and M. L. Parker, “Measuring of pressure and mass speed in solid bodies at dynamic loading,” Fiz. Goreniya i Vzryva, No. 5, 113-126 (1986).
9.
go back to reference United States Patent 5491879, Procedure to polarize at least one zone of a foil of ferroelectric material to produce a polarized element for piezoelectric or pyroelectric tranducers, F. Bauer, 1996. United States Patent 5491879, Procedure to polarize at least one zone of a foil of ferroelectric material to produce a polarized element for piezoelectric or pyroelectric tranducers, F. Bauer, 1996.
10.
go back to reference N. Yu. Makarova, “Modeling the output signal of mechanoluminescent sensor of dynamic pressure,” Nauka i Obrazov., N/ E/ Bauman MGTU, No. 6, 187-200 (2015). N. Yu. Makarova, “Modeling the output signal of mechanoluminescent sensor of dynamic pressure,” Nauka i Obrazov., N/ E/ Bauman MGTU, No. 6, 187-200 (2015).
11.
go back to reference K. V. Tatmyshevskii, Scientific Basis for Calculation and Design of Mechanoluminescent Sensitive Sensors of Pulse Pressure [in Russian], Extended abstract of Dr. Thesis, Moscow (2010). K. V. Tatmyshevskii, Scientific Basis for Calculation and Design of Mechanoluminescent Sensitive Sensors of Pulse Pressure [in Russian], Extended abstract of Dr. Thesis, Moscow (2010).
12.
go back to reference Russian Patent 2305847 (13) C1. Mechanoluminescent Impact Sensor, /Z. T. Rakhmanov, N. Yu. Makarova, A. G. Spazhakin, and K. V. Tatmyshevskii (2007). Russian Patent 2305847 (13) C1. Mechanoluminescent Impact Sensor, /Z. T. Rakhmanov, N. Yu. Makarova, A. G. Spazhakin, and K. V. Tatmyshevskii (2007).
13.
go back to reference Russian Patent 347228 (13) C1. Vector piezoelectric vibration transducer, D. N. Levitskii and A. A. Speranskii (2009). Russian Patent 347228 (13) C1. Vector piezoelectric vibration transducer, D. N. Levitskii and A. A. Speranskii (2009).
14.
go back to reference Russian Patent 2229136 (13) C1. Three-component piezoelectric vibration accelerometer, I. B. Kobyakov (2004). Russian Patent 2229136 (13) C1. Three-component piezoelectric vibration accelerometer, I. B. Kobyakov (2004).
15.
go back to reference Russian Patent RU 1191625 (13) U1. Sensor for determining the size and direction of strain of an extended object, B. G. Gorshkov, D. V. Zazirnyi, and M. V. Zazirnyi (2010). Russian Patent RU 1191625 (13) U1. Sensor for determining the size and direction of strain of an extended object, B. G. Gorshkov, D. V. Zazirnyi, and M. V. Zazirnyi (2010).
16.
go back to reference Patent US 6305227 B1. Sensing systems using quartz sensors and fiber optics, Jian–qun Wu, Kevin F. Didden, Alan D. Kersey, Phillip E. Pruett, and Arthur D. Hay. Publ. 23.10.2001 Patent US 6305227 B1. Sensing systems using quartz sensors and fiber optics, Jian–qun Wu, Kevin F. Didden, Alan D. Kersey, Phillip E. Pruett, and Arthur D. Hay. Publ. 23.10.2001
17.
go back to reference United States Patent 20060177171 A1. Tension–controlled fiber optic tuning and isolating device, D. Marceau, D. Elkins, F. Williams, and A. Tanner (2006). United States Patent 20060177171 A1. Tension–controlled fiber optic tuning and isolating device, D. Marceau, D. Elkins, F. Williams, and A. Tanner (2006).
18.
go back to reference United States Patent 20060254366 A1. Sensor and sensor array for monitoring a structure, C. Williamson, L. Fixter, and A. Clarke (2006). United States Patent 20060254366 A1. Sensor and sensor array for monitoring a structure, C. Williamson, L. Fixter, and A. Clarke (2006).
19.
go back to reference United States Patent 7458266 B2. Method and apparatus for detecting a load change upon a structure and analyzing characteristics of resulting damage, S. J. Beard, X. Qing, H. L. Chan, Ch. Zhang, and F. K. Chang (2008). United States Patent 7458266 B2. Method and apparatus for detecting a load change upon a structure and analyzing characteristics of resulting damage, S. J. Beard, X. Qing, H. L. Chan, Ch. Zhang, and F. K. Chang (2008).
20.
go back to reference United States Patent 6399939 B1. Sensor array system, M. J. Sundaresan, A. Ghoshal, and M. J. Schulz (2002). United States Patent 6399939 B1. Sensor array system, M. J. Sundaresan, A. Ghoshal, and M. J. Schulz (2002).
21.
go back to reference Russian Patent RU No. 2630537. Fiber-optical pressure sensor, A. A. Pankov (2017). Russian Patent RU No. 2630537. Fiber-optical pressure sensor, A. A. Pankov (2017).
22.
go back to reference A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 325-344 (2017). A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 325-344 (2017).
23.
go back to reference Russian Patent RU No. 2643692. Fiber-optical sensor of 3D stress state, A. A. Pankov (publ. 05.02.2018). Russian Patent RU No. 2643692. Fiber-optical sensor of 3D stress state, A. A. Pankov (publ. 05.02.2018).
24.
go back to reference S. D. Volkov and V. P. Stavrov, Statistical Mechanics of Composite Materials [in Russian], Izd. Belorus. Gos. Univers., Minsk (1978). S. D. Volkov and V. P. Stavrov, Statistical Mechanics of Composite Materials [in Russian], Izd. Belorus. Gos. Univers., Minsk (1978).
25.
go back to reference I. Babu, Piezoelectric Composites. Design, Fabrication and Performance Analysis, Eindhoven University of Technology (2013). I. Babu, Piezoelectric Composites. Design, Fabrication and Performance Analysis, Eindhoven University of Technology (2013).
26.
go back to reference Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts / T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, D. M. Mowery, R. A. Assink, R. L. Clough, and J. W. Martin, Sandia Report, SAND2005–6846, Unlimited Release, Sandia National Laboratories (2005). Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts / T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, D. M. Mowery, R. A. Assink, R. L. Clough, and J. W. Martin, Sandia Report, SAND2005–6846, Unlimited Release, Sandia National Laboratories (2005).
27.
go back to reference А. Seema, K. R. Dayas, and J. M. Varghese, “PVDF-PZT-5H composites prepared by hot press and tape casting techniques,” J. Appl. Polymer Sci. 106, 146-151 (2007).CrossRef А. Seema, K. R. Dayas, and J. M. Varghese, “PVDF-PZT-5H composites prepared by hot press and tape casting techniques,” J. Appl. Polymer Sci. 106, 146-151 (2007).CrossRef
28.
go back to reference G. M. Sessler, “Piezoelectricity in polyvinylidenefluoride,” J. Acoust. Soc. Amer., 70, No. 6, 1596-1608 (1981).CrossRef G. M. Sessler, “Piezoelectricity in polyvinylidenefluoride,” J. Acoust. Soc. Amer., 70, No. 6, 1596-1608 (1981).CrossRef
29.
go back to reference L. P. Khoroshun, B. P. Maslov, and P. V. Leschenko, Prediction of the Effective Properties of Piezoactive Composite Materials [in Russian], Naukova Dumka, Kiev (1989). L. P. Khoroshun, B. P. Maslov, and P. V. Leschenko, Prediction of the Effective Properties of Piezoactive Composite Materials [in Russian], Naukova Dumka, Kiev (1989).
30.
go back to reference B. E. Pobedrya and V. I. Gorbachev, “On the static problems of elastic composites,” Vestn. MGU. Ser. 1. Matematika i Mekhanika, No. 5, 101-110 (1977). B. E. Pobedrya and V. I. Gorbachev, “On the static problems of elastic composites,” Vestn. MGU. Ser. 1. Matematika i Mekhanika, No. 5, 101-110 (1977).
31.
go back to reference B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Univers., Moscow (1984). B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Univers., Moscow (1984).
32.
go back to reference A. V. Turik and G. S. Radchenko, “Gigantic piezoelectric effect in layered ferroelectric-polymer composites,” Fiz. Tverd. Tela, 45, No. 9, 1676-1679 (2003). A. V. Turik and G. S. Radchenko, “Gigantic piezoelectric effect in layered ferroelectric-polymer composites,” Fiz. Tverd. Tela, 45, No. 9, 1676-1679 (2003).
Metadata
Title
A Piezoelectroluminescent Fiber-Optical Sensor for Diagnostics of the 3D Stress State in Composite Structures
Publication date
11-05-2018
Published in
Mechanics of Composite Materials / Issue 2/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9728-6

Other articles of this Issue 2/2018

Mechanics of Composite Materials 2/2018 Go to the issue

Premium Partners