Skip to main content
Top
Published in: Journal of Scientific Computing 2/2023

01-05-2023

A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential

Authors: Qianqian Liu, Jianyu Jing, Maoqin Yuan, Wenbin Chen

Published in: Journal of Scientific Computing | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose and analyze a BDF2 scheme with variable time steps for the Cahn–Hilliard equation with a logarithmic Flory–Huggins energy potential. The lumped mass method is adopted in the space discretization to ensure that the proposed scheme is uniquely solvable and positivity-preserving. Especially, a new second order viscous regularization term is added at the discrete level to guarantee the energy dissipation property. Furthermore, the energy stability is derived by a careful estimate under the condition that \(r\le r_{\max }\). To estimate the spatial and temporal errors separately, a spatially semi-discrete scheme is proposed and a new elliptic projection is introduced, and the super-closeness between this projection and the Ritz projection of the exact solution is attained. Based on the strict separation property of the numerical solution obtained by using the technique of combining the rough and refined error estimates, the convergence analysis in \(l^{\infty }(0,T;L_h^2(\varOmega ))\) norm is established when \(\tau \le Ch\) by using the technique of the DOC kernels. Finally, several numerical experiments are carried out to validate the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)MathSciNetMATH Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)MathSciNetMATH
2.
go back to reference Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 67(11), 3176–3193 (2007)MathSciNetMATH Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 67(11), 3176–3193 (2007)MathSciNetMATH
3.
go back to reference Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, Amsterdam (2003)MATH Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, Amsterdam (2003)MATH
4.
go back to reference Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)MathSciNetMATH Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)MathSciNetMATH
5.
go back to reference Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetMATH Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetMATH
6.
go back to reference Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)MathSciNetMATH Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)MathSciNetMATH
7.
go back to reference Blowey, J.F., Copetti, M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multicomponent alloy. IMA J. Numer. Anal. 16(1), 111–139 (1996)MathSciNetMATH Blowey, J.F., Copetti, M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multicomponent alloy. IMA J. Numer. Anal. 16(1), 111–139 (1996)MathSciNetMATH
8.
go back to reference Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)MathSciNetMATH Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)MathSciNetMATH
9.
go back to reference Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)MATH Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)MATH
10.
go back to reference Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971) Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971)
11.
go back to reference Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)MathSciNetMATH Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)MathSciNetMATH
12.
go back to reference Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank–Nicolson numerical scheme for the Flory–Huggins Cahn–Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATH Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank–Nicolson numerical scheme for the Flory–Huggins Cahn–Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATH
13.
go back to reference Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)MathSciNetMATH Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)MathSciNetMATH
14.
go back to reference Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)MathSciNetMATH Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)MathSciNetMATH
15.
go back to reference Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Model. 19(2–3), 275–298 (2022)MathSciNetMATH Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Model. 19(2–3), 275–298 (2022)MathSciNetMATH
16.
go back to reference Chen, W., Liu, Y., Wang, C., Wise, S.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)MathSciNetMATH Chen, W., Liu, Y., Wang, C., Wise, S.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)MathSciNetMATH
17.
go back to reference Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84(2), 1–36 (2020)MathSciNetMATH Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84(2), 1–36 (2020)MathSciNetMATH
18.
go back to reference Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet
19.
go back to reference Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)MathSciNetMATH Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)MathSciNetMATH
20.
go back to reference Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math.: Theory Methods Appl. 15(2), 279–303 (2022)MathSciNetMATH Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math.: Theory Methods Appl. 15(2), 279–303 (2022)MathSciNetMATH
21.
go back to reference Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)MathSciNetMATH Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)MathSciNetMATH
22.
go back to reference Choksi, R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11(3), 223–236 (2001)MathSciNetMATH Choksi, R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11(3), 223–236 (2001)MathSciNetMATH
23.
go back to reference Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetMATH Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetMATH
24.
go back to reference Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 24(10), 1491–1514 (1995)MathSciNetMATH Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 24(10), 1491–1514 (1995)MathSciNetMATH
25.
go back to reference Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137(3), 495–534 (2017)MathSciNetMATH Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137(3), 495–534 (2017)MathSciNetMATH
26.
go back to reference Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)MATH Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)MATH
27.
go back to reference Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATH Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATH
28.
go back to reference Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)MathSciNetMATH Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)MathSciNetMATH
30.
go back to reference Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)MathSciNetMATH Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)MathSciNetMATH
31.
go back to reference Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Libr. (OPL) 529, 39 (1998)MathSciNet Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Libr. (OPL) 529, 39 (1998)MathSciNet
32.
go back to reference Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetMATH Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetMATH
33.
go back to reference Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele–Shaw flow. Calc. Var. Partial Differ. Equ. 13(3), 377–403 (2001)MATH Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele–Shaw flow. Calc. Var. Partial Differ. Equ. 13(3), 377–403 (2001)MATH
34.
go back to reference Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983)MathSciNetMATH Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983)MathSciNetMATH
35.
go back to reference Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)MathSciNetMATH Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)MathSciNetMATH
37.
go back to reference Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)MathSciNetMATH Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)MathSciNetMATH
38.
go back to reference Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)MathSciNetMATH Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)MathSciNetMATH
39.
go back to reference Kang, Y., Liao, Hl.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91(2), 1–22 (2022)MathSciNetMATH Kang, Y., Liao, Hl.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91(2), 1–22 (2022)MathSciNetMATH
40.
go back to reference Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)MathSciNetMATH Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)MathSciNetMATH
41.
go back to reference Larson, R.: Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17), 3983–3992 (1990) Larson, R.: Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17), 3983–3992 (1990)
42.
go back to reference Larson, R., Ottinger, H.: Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules 24(23), 6270–6282 (1991) Larson, R., Ottinger, H.: Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules 24(23), 6270–6282 (1991)
43.
go back to reference Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier (1979) Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier (1979)
44.
go back to reference Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)MathSciNetMATH Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)MathSciNetMATH
45.
go back to reference Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation. IMA J. Numer. Anal. (2022) Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation. IMA J. Numer. Anal. (2022)
46.
go back to reference Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)MathSciNetMATH Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)MathSciNetMATH
47.
go back to reference Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of the variable steps BDF2 method for the Cahn–Hilliard model (2021). arXiv:2102.03731 Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of the variable steps BDF2 method for the Cahn–Hilliard model (2021). arXiv:​2102.​03731
48.
go back to reference Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)MathSciNetMATH Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)MathSciNetMATH
49.
go back to reference Liao, H., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:2201.00609 Liao, H., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:​2201.​00609
50.
51.
go back to reference Liao, H., Tang, T., Zhou, T.: Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations (2022). arXiv:2204.12742 Liao, H., Tang, T., Zhou, T.: Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations (2022). arXiv:​2204.​12742
52.
go back to reference Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90(331), 2071–2106 (2021)MathSciNetMATH Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90(331), 2071–2106 (2021)MathSciNetMATH
53.
go back to reference Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)MathSciNetMATH Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)MathSciNetMATH
54.
go back to reference Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetMATH Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetMATH
55.
go back to reference Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math. 57(3), 215–229 (2012)MathSciNetMATH Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math. 57(3), 215–229 (2012)MathSciNetMATH
56.
go back to reference Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)MathSciNetMATH Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)MathSciNetMATH
57.
go back to reference Otto, F.: Lubrication approximation with prescribed nonzero contact anggle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)MATH Otto, F.: Lubrication approximation with prescribed nonzero contact anggle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)MATH
58.
go back to reference Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)MathSciNetMATH Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)MathSciNetMATH
59.
go back to reference Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)MathSciNetMATH Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)MathSciNetMATH
60.
go back to reference Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH
61.
go back to reference Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetMATH Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetMATH
62.
go back to reference Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Systems. 28(4), 1669 (2010)MathSciNetMATH Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Systems. 28(4), 1669 (2010)MathSciNetMATH
63.
go back to reference Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)MATH
64.
go back to reference Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)MathSciNetMATH Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)MathSciNetMATH
65.
go back to reference Wang, W., Mao, M., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)MathSciNetMATH Wang, W., Mao, M., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)MathSciNetMATH
66.
go back to reference Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47(1), 1–28 (2021)MathSciNetMATH Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47(1), 1–28 (2021)MathSciNetMATH
67.
go back to reference Wight, C.L., Zhao, J.: Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks (2020). arXiv:2007.04542 Wight, C.L., Zhao, J.: Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks (2020). arXiv:​2007.​04542
68.
go back to reference Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)MathSciNetMATH Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)MathSciNetMATH
69.
go back to reference Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)MathSciNetMATH Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)MathSciNetMATH
70.
go back to reference Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetMATH Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetMATH
71.
go back to reference Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)MathSciNetMATH Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)MathSciNetMATH
72.
go back to reference Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2017)MathSciNetMATH Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2017)MathSciNetMATH
73.
go back to reference Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)MathSciNetMATH Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)MathSciNetMATH
74.
go back to reference Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021)MathSciNetMATH Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021)MathSciNetMATH
75.
go back to reference Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)MathSciNetMATH Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)MathSciNetMATH
76.
go back to reference Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetMATH Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetMATH
77.
go back to reference Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MathSciNetMATH Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MathSciNetMATH
78.
go back to reference Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)MathSciNetMATH Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)MathSciNetMATH
79.
go back to reference Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 35–64 (1999) Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 35–64 (1999)
Metadata
Title
A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential
Authors
Qianqian Liu
Jianyu Jing
Maoqin Yuan
Wenbin Chen
Publication date
01-05-2023
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2023
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02163-z

Other articles of this Issue 2/2023

Journal of Scientific Computing 2/2023 Go to the issue

Premium Partner