Skip to main content
Erschienen in: Journal of Scientific Computing 2/2023

01.05.2023

A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential

verfasst von: Qianqian Liu, Jianyu Jing, Maoqin Yuan, Wenbin Chen

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose and analyze a BDF2 scheme with variable time steps for the Cahn–Hilliard equation with a logarithmic Flory–Huggins energy potential. The lumped mass method is adopted in the space discretization to ensure that the proposed scheme is uniquely solvable and positivity-preserving. Especially, a new second order viscous regularization term is added at the discrete level to guarantee the energy dissipation property. Furthermore, the energy stability is derived by a careful estimate under the condition that \(r\le r_{\max }\). To estimate the spatial and temporal errors separately, a spatially semi-discrete scheme is proposed and a new elliptic projection is introduced, and the super-closeness between this projection and the Ritz projection of the exact solution is attained. Based on the strict separation property of the numerical solution obtained by using the technique of combining the rough and refined error estimates, the convergence analysis in \(l^{\infty }(0,T;L_h^2(\varOmega ))\) norm is established when \(\tau \le Ch\) by using the technique of the DOC kernels. Finally, several numerical experiments are carried out to validate the theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)MathSciNetMATH Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)MathSciNetMATH
2.
Zurück zum Zitat Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 67(11), 3176–3193 (2007)MathSciNetMATH Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 67(11), 3176–3193 (2007)MathSciNetMATH
3.
Zurück zum Zitat Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, Amsterdam (2003)MATH Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, Amsterdam (2003)MATH
4.
Zurück zum Zitat Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)MathSciNetMATH Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)MathSciNetMATH
5.
Zurück zum Zitat Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetMATH Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetMATH
6.
Zurück zum Zitat Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)MathSciNetMATH Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)MathSciNetMATH
7.
Zurück zum Zitat Blowey, J.F., Copetti, M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multicomponent alloy. IMA J. Numer. Anal. 16(1), 111–139 (1996)MathSciNetMATH Blowey, J.F., Copetti, M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multicomponent alloy. IMA J. Numer. Anal. 16(1), 111–139 (1996)MathSciNetMATH
8.
Zurück zum Zitat Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)MathSciNetMATH Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)MathSciNetMATH
9.
Zurück zum Zitat Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)MATH Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)MATH
10.
Zurück zum Zitat Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971) Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971)
11.
Zurück zum Zitat Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)MathSciNetMATH Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)MathSciNetMATH
12.
Zurück zum Zitat Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank–Nicolson numerical scheme for the Flory–Huggins Cahn–Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATH Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank–Nicolson numerical scheme for the Flory–Huggins Cahn–Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATH
13.
Zurück zum Zitat Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)MathSciNetMATH Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)MathSciNetMATH
14.
Zurück zum Zitat Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)MathSciNetMATH Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)MathSciNetMATH
15.
Zurück zum Zitat Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Model. 19(2–3), 275–298 (2022)MathSciNetMATH Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Model. 19(2–3), 275–298 (2022)MathSciNetMATH
16.
Zurück zum Zitat Chen, W., Liu, Y., Wang, C., Wise, S.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)MathSciNetMATH Chen, W., Liu, Y., Wang, C., Wise, S.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)MathSciNetMATH
17.
Zurück zum Zitat Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84(2), 1–36 (2020)MathSciNetMATH Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84(2), 1–36 (2020)MathSciNetMATH
18.
Zurück zum Zitat Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet
19.
Zurück zum Zitat Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)MathSciNetMATH Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)MathSciNetMATH
20.
Zurück zum Zitat Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math.: Theory Methods Appl. 15(2), 279–303 (2022)MathSciNetMATH Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math.: Theory Methods Appl. 15(2), 279–303 (2022)MathSciNetMATH
21.
Zurück zum Zitat Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)MathSciNetMATH Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)MathSciNetMATH
22.
Zurück zum Zitat Choksi, R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11(3), 223–236 (2001)MathSciNetMATH Choksi, R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11(3), 223–236 (2001)MathSciNetMATH
23.
Zurück zum Zitat Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetMATH Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetMATH
24.
Zurück zum Zitat Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 24(10), 1491–1514 (1995)MathSciNetMATH Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 24(10), 1491–1514 (1995)MathSciNetMATH
25.
Zurück zum Zitat Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137(3), 495–534 (2017)MathSciNetMATH Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137(3), 495–534 (2017)MathSciNetMATH
26.
Zurück zum Zitat Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)MATH Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)MATH
27.
Zurück zum Zitat Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATH Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATH
28.
Zurück zum Zitat Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)MathSciNetMATH Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)MathSciNetMATH
30.
Zurück zum Zitat Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)MathSciNetMATH Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)MathSciNetMATH
31.
Zurück zum Zitat Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Libr. (OPL) 529, 39 (1998)MathSciNet Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Libr. (OPL) 529, 39 (1998)MathSciNet
32.
Zurück zum Zitat Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetMATH Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetMATH
33.
Zurück zum Zitat Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele–Shaw flow. Calc. Var. Partial Differ. Equ. 13(3), 377–403 (2001)MATH Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele–Shaw flow. Calc. Var. Partial Differ. Equ. 13(3), 377–403 (2001)MATH
34.
Zurück zum Zitat Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983)MathSciNetMATH Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983)MathSciNetMATH
35.
Zurück zum Zitat Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)MathSciNetMATH Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)MathSciNetMATH
37.
Zurück zum Zitat Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)MathSciNetMATH Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)MathSciNetMATH
38.
Zurück zum Zitat Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)MathSciNetMATH Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)MathSciNetMATH
39.
Zurück zum Zitat Kang, Y., Liao, Hl.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91(2), 1–22 (2022)MathSciNetMATH Kang, Y., Liao, Hl.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91(2), 1–22 (2022)MathSciNetMATH
40.
Zurück zum Zitat Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)MathSciNetMATH Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)MathSciNetMATH
41.
Zurück zum Zitat Larson, R.: Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17), 3983–3992 (1990) Larson, R.: Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17), 3983–3992 (1990)
42.
Zurück zum Zitat Larson, R., Ottinger, H.: Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules 24(23), 6270–6282 (1991) Larson, R., Ottinger, H.: Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules 24(23), 6270–6282 (1991)
43.
Zurück zum Zitat Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier (1979) Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier (1979)
44.
Zurück zum Zitat Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)MathSciNetMATH Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)MathSciNetMATH
45.
Zurück zum Zitat Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation. IMA J. Numer. Anal. (2022) Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation. IMA J. Numer. Anal. (2022)
46.
Zurück zum Zitat Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)MathSciNetMATH Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)MathSciNetMATH
47.
Zurück zum Zitat Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of the variable steps BDF2 method for the Cahn–Hilliard model (2021). arXiv:2102.03731 Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of the variable steps BDF2 method for the Cahn–Hilliard model (2021). arXiv:​2102.​03731
48.
Zurück zum Zitat Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)MathSciNetMATH Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)MathSciNetMATH
49.
Zurück zum Zitat Liao, H., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:2201.00609 Liao, H., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:​2201.​00609
50.
Zurück zum Zitat Liao, H., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas (2021). arXiv:2102.04644 Liao, H., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas (2021). arXiv:​2102.​04644
51.
Zurück zum Zitat Liao, H., Tang, T., Zhou, T.: Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations (2022). arXiv:2204.12742 Liao, H., Tang, T., Zhou, T.: Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations (2022). arXiv:​2204.​12742
52.
Zurück zum Zitat Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90(331), 2071–2106 (2021)MathSciNetMATH Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90(331), 2071–2106 (2021)MathSciNetMATH
53.
Zurück zum Zitat Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)MathSciNetMATH Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)MathSciNetMATH
54.
Zurück zum Zitat Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetMATH Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetMATH
55.
Zurück zum Zitat Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math. 57(3), 215–229 (2012)MathSciNetMATH Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math. 57(3), 215–229 (2012)MathSciNetMATH
56.
Zurück zum Zitat Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)MathSciNetMATH Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)MathSciNetMATH
57.
Zurück zum Zitat Otto, F.: Lubrication approximation with prescribed nonzero contact anggle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)MATH Otto, F.: Lubrication approximation with prescribed nonzero contact anggle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)MATH
58.
Zurück zum Zitat Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)MathSciNetMATH Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)MathSciNetMATH
59.
Zurück zum Zitat Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)MathSciNetMATH Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)MathSciNetMATH
60.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH
61.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetMATH Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetMATH
62.
Zurück zum Zitat Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Systems. 28(4), 1669 (2010)MathSciNetMATH Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Systems. 28(4), 1669 (2010)MathSciNetMATH
63.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)MATH
64.
Zurück zum Zitat Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)MathSciNetMATH Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)MathSciNetMATH
65.
Zurück zum Zitat Wang, W., Mao, M., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)MathSciNetMATH Wang, W., Mao, M., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)MathSciNetMATH
66.
Zurück zum Zitat Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47(1), 1–28 (2021)MathSciNetMATH Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47(1), 1–28 (2021)MathSciNetMATH
67.
Zurück zum Zitat Wight, C.L., Zhao, J.: Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks (2020). arXiv:2007.04542 Wight, C.L., Zhao, J.: Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks (2020). arXiv:​2007.​04542
68.
Zurück zum Zitat Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)MathSciNetMATH Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)MathSciNetMATH
69.
Zurück zum Zitat Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)MathSciNetMATH Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)MathSciNetMATH
70.
Zurück zum Zitat Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetMATH Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetMATH
71.
Zurück zum Zitat Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)MathSciNetMATH Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)MathSciNetMATH
72.
Zurück zum Zitat Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2017)MathSciNetMATH Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2017)MathSciNetMATH
73.
Zurück zum Zitat Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)MathSciNetMATH Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)MathSciNetMATH
74.
Zurück zum Zitat Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021)MathSciNetMATH Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021)MathSciNetMATH
75.
Zurück zum Zitat Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)MathSciNetMATH Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)MathSciNetMATH
76.
Zurück zum Zitat Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetMATH Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetMATH
77.
Zurück zum Zitat Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MathSciNetMATH Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MathSciNetMATH
78.
Zurück zum Zitat Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)MathSciNetMATH Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)MathSciNetMATH
79.
Zurück zum Zitat Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 35–64 (1999) Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 35–64 (1999)
Metadaten
Titel
A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential
verfasst von
Qianqian Liu
Jianyu Jing
Maoqin Yuan
Wenbin Chen
Publikationsdatum
01.05.2023
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2023
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02163-z

Weitere Artikel der Ausgabe 2/2023

Journal of Scientific Computing 2/2023 Zur Ausgabe

Premium Partner